Genome-wide Copy Number Variation Analysis

in Early Onset Alzheimer’s disease

A thesis

Submitted to the Faculty

of

Drexel University

by

Basavaraj V. Hooli

in partial fulfillment of the

requirements for the degree

of

Doctorate of Philosophy

August 2011
Dedication

To my family, mentors and friends for their enduring encouragement, love and support.
Acknowledgements

Thankful acknowledgments are owed to some really awesome people.

First and foremost, to my incredible mentors over the past years – Drs. Rudy Tanzi, Lars Bertram and Aleister Saunders. I would like to express sincere gratitude to Rudy for the opportunity to pursue PhD in his illustrious lab, for being an inspiring mentor, all the support, patience and guidance over the years. I will be always indebted to Lars for all the knowledge and training in Alzheimer’s genetics and conducting methodical and systematic research – it is an absolute priceless experience. I cannot thank Aleister enough for introducing me to the field of scientific research, for providing a strong foundation in basics of biological research in such a short duration of time, and for the continued advice and counsel. I will always be grateful for the contribution of my mentors to my intellectual and professional development – I feel privileged to have them as my mentors.

My sincere thanks to the committee members Drs. Guillermo Alexander, Jacob Russell and Daniel Marenda for their support and valuable input towards successful and timely completion of the project.

I appreciate meeting some of the smartest minds and nicest people during these past years - Sara Ansaloni, Neha Patel, Ranjita Mukherjee, Preeti
Khandelwal, Trinna Cuellar in Aleister’s lab. I would also not have completed
my project without the help and support of my colleagues in Rudy’s unit:
Michele Parkinson, Donna Romano, Meghan Hogan, Kelly Goodwin, Taryn
Hargrove, Lucille Gotta, Rachael Blair, Jacqueline Greb, Dipal Savla, Rob Moir,
Stephanie Tucker, Mikko Hiltunen, Can (Martin) Zhang, Antonio Parrado, Brit-
Maren Schjeide, Se Hoon Choi, Jaehong Suh, Graham Huesmann and Ana
Gricuic. We have had many "civilian" and scientific discourses, solved
mysterious, took journeys together and partied until wee hours - I hope we cross
our paths in future to re-live those moments. Special thanks to Kristina Mullin
and Susanna Cortese for being there for me 24/7!

I owe many thanks to my fellow Cricketers and mates at Colonial
Cavaliers Cricket Club for all the laughs and camaraderie - Gary Paul, James Fry,
Paddy Cashin, Stig Bjornbye, Donovan Hudson, Ben Loomes, Mark
Montgomery, Paul Whitelam, Mark Tutton, Jim Andrew, Mukund Ravipathy,
Rob Cooper and Lee Hewitt – cheers for victory and friendship!

My heartfelt thanks to Isabella Palazzolo, Katie Caruana, Shawn Mullet,
Marietta Kukuyan, Paul and Claudia Gard et al, Holger Droessler, Thomas
Geroje, Samir Varma, Lalit Bansal, Kumar Anabalagan, Vasil Atanasov, Simona
Coborzan, Alina Constantinescu, Manuel Gersbacher and Johanna Bosse for their companionship during these years.

Most importantly, my family mama-Hooli, Anagha, Namita, Shiva and Shan - for their faith, love and support.
TABLE OF CONTENTS

LIST OF TABLES ... xi
LIST OF FIGURES .. xii
ABSTRACT ... xiii

1. INTRODUCTION .. 1
 1.1 Alzheimer’s Disease .. 1
 1.2 Genetics of Alzheimer’s Disease ... 2
 1.3 Current Status of AD Genetics .. 3
 1.4 Structural Variations in the Genome ... 4
 1.5 Copy Number Variations ... 5
 1.6 Genomic effects of CNVs .. 6
 1.7 Functional Effects of CNVs .. 7
 1.8 Prevalence of CNVs ... 9
 1.9 CNP Studies .. 11
 1.10 CNV Analysis Strategy ... 13
 1.11 Ongoing Functional Studies .. 15
 1.12 Summary ... 16

2. A CURRENT VIEW OF ALZHEIMER’S DISEASE ... 24
 2.1 Abstract ... 24
 2.2 Introduction .. 24
 2.3 Genetics of AD .. 25
 2.4 Molecular Pathology of AD ... 25
 2.5 Therapeutics in AD .. 26
 2.6 Major recent advances ... 27
 2.6.1 Genetics .. 27
 2.6.2 Beta-amyloid toxicity ... 28
2.7 Future directions ... 30

3. THE ROLE OF COMMON AND RARE APP DNA SEQUENCE
VARIANTS IN ALZHEIMR’S DISEASE LIST OF TABLES 35

3.1 Abstract .. 35

3.1.1 Objectives ... 35

3.1.2 Methods .. 35

3.1.3 Results .. 35

3.1.4 Conclusion .. 36

3.2 Introduction .. 37

3.3 Results ... 39

3.4 Discussion ... 42

3.5 Materials and Methods ... 47

3.5.1 Participants .. 47

3.5.1.1 NIMH families ... 47

3.5.1.2 NCRAD and additional independent family samples 48

3.5.2 Experimental procedures .. 48

3.5.2.1 Sequencing .. 48

3.5.2.2 Semi-Quantitative Multiplex PCR (sQM-PCR) 49

3.5.2.3 Fluorescent in situ hybridization (FISH) 49

3.5.2.4 SNP-Genotyping ... 49

3.5.2.5 CNV Analysis ... 50

3.5.2.6 Fluidigm Digital Array protocol .. 51

3.5.2.7 Statistical Analyses ... 51

4. RARE AUTOSOMAL COPY NUMBER VARIATIONS IN EARLY ONSET
ALZHEIMER’S DISEASE .. 62

4.1 Abstract ... 62

4.2 Introduction ... 63

4.3 Results ... 66
LIST OF REFERENCES ... 125
APPENDICES .. 143
Abbreviations .. 144
Supplementary Table 1: Additional CNV confirmation in probands using TERT house-control gene instead of the RNaseP .. 149
Supplementary 2: Image Results from FISH Confirmation experiments in NIMH families ... 151
 Family 52106 .. 151
 Family 51278 .. 152
 Family 50152 .. 153
 Family 50354 .. 154
 Family 50985 .. 155
 Family 50996 .. 156
 Family 50368 .. 157
 Family 51146 .. 158
 Family 51223 .. 159
 Family 52256 .. 160
 Family 51192 .. 161
 Family 50722 .. 162
VITA ... 163
LIST OF TABLES

1. Partial list of human neurological disorders attributed to CNVs 18
2. Genetic association results of two APP promoter polymorphisms previously reported to be associated with AD risk ... 54
3. Summary of demographic and clinical characteristics of families linked to APP region on chromosome 21q ... 55
4. Results of relative quantitation of APP copy number from Fluidigm Digital Array 48.776 data ... 56
5. Overview of CNVs identified in two collections of Alzheimer’s disease family cohorts .. 76
6. List of rare CNVs identified in NIMH and NCRAD pedigree sets 77
7. Detailed results of Fluidigm and FISH confirmation of CNVs identified in the NIMH pedigree dataset ... 80
8. Detailed results of Fluidigm CNV confirmation in NCRAD pedigree dataset ... 86
9. FISH images of lymphoblastoid cell lines derived from NIMH EOFAD probands .. 89
10. Summary of rare CNVs in human disorders that led to the identification of the underlying gene defect .. 123
11. Additional CNV confirmation in probands using TERT house-control gene instead of the RNaseP .. 149
LIST OF FIGURES

1. Illustration of CNVs in the genome and examples of ensuing effect on phenotypic variability ... 20
2. Overview of CNV analysis workflow in EOFAD family samples 22
3. Aβ-induced internalization of synaptic NMDA and AMPA receptors ... 32
4. Synaptic Aβ hypothesis .. 34
5. Pedigree charts of families found to carry disease-causing APP mutations and locus duplications ... 57
6. Delineation of APP duplicated region identified here vs. those of previous studies .. 59
7. FISH images of lymphoblast cells from all individuals in family VI carrying a duplication of the APP-locus .. 61
8. Pedigree structure of families belonging to NIMH and NCRAD AD cohorts carrying rare CNVs .. 91
9. Supplementary 2: Image Results from FISH Confirmation experiments in NIMH families ... 151
Abstract

Genome-wide Copy Number Variation Analysis in Early Onset Alzheimer’s disease

Basavaraj Hooli, MS
Rudolph E. Tanzi, PhD, Lars Bertram, MD and Aleister Saunders, PhD

Background: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the leading cause of senile dementia. By the year 2050, AD prevalence is projected to affect a staggering 15 million in the US and 80 million worldwide, making discovery of therapeutic interventions imperative. Family history is the second major risk factor in AD following age. Although close to 700 different genes have been investigated in AD to date, fully penetrant mutations in three genes: APP, PSEN1 and PSEN2 known to cause early-onset familial AD (EOFAD), and a common e4 allele in APOE increasing risk in sporadic or late onset form of AD (LOAD), remain the only established AD genetic factors; altogether explaining just about 50% of the variance.

Rationale and Aim: A Majority of the published reports in AD genetics are based on nucleotide level changes, while role of large genomic structural rearrangements such as, copy number variations (CNVs), are not comprehensively investigated - APP locus duplication remains the only pathogenic CNV reported to date. With an estimated genomic coverage of over ten times that of single nucleotide polymorphisms (SNPs), CNVs make significant contribution to
genotypic and phenotypic variation, consequently underlying pathogenesis of various diseases. The specific aim of the project is to perform genome-wide CNV analysis in AD afflicted families to identify presence of pathogenic CNVs, if any.

Approach: Genetic studies in EOFAD pedigrees have been most fruitful in revealing rare mutations, which also contributed significantly to the current understanding of AD pathogenesis. On the other hand, the complex and heterogeneous nature of genetics of LOAD have been hard to unravel. Therefore, this study is limited to analysis of large (>100 Kb), rare and fully penetrant CNVs in early-onset pedigree samples (261 families and 1015 subjects).

Results: In addition to confirming APP duplication in two previously known families, our results revealed nine rare and novel CNVs segregating with EOFAD. The CNVs encompass genes, *ERMP1, CRMP1, CHMP2B, VLDLR, A2BP1,* and *EPHA6,* to name a few, associated with various neuronal pathways and brain disorders. To our knowledge, this is the first study reporting rare gene-rich CNVs in EOFAD.
CHAPTER 1: INTRODUCTION

1.1 Alzheimer’s disease

Alzheimer’s disease makes up for 60-80% of dementia diagnosed in the elderly. In 2010, the numbers of reported dementia cases were estimated to be 5.5 million in US and more than 36 million people worldwide. This number of patients is projected to nearly double every 20 years resulting in more than 15 million AD cases in US and more than 100 million patients globally (Alzheimer's, 2009, 2010; Ferri et al., 2005; Leon & Neumann, 1999). Clinically, AD is characterized by progressive neurodegeneration and impairment of memory and cognitive functions (McKhann et al., 1984), due to loss of synapses of the affected brain regions, mainly hippocampus and cerebral cortex. The Neuropathological hallmark of post-mortem AD brains are extracellular plaques composed of amyloid-beta (Aβ) peptides and intraneuronal neurofibrillary tangles consisting of hyperphosphorylated tau protein - although other lesions such as TDP-43 immunoreactivity, cerebral amyloid angiopathy (CAA) and ischaemia are also reported in many cases (Braak & Braak, 1991).

1.2 Genetics of Alzheimer’s disease

AD is caused by several complex and heterogeneous factors. The definite causative factors of AD are not known in most cases but there are several risk
factors that contribute to the onset of the disease. Age and family history are the
greatest risk factors in AD. The risk for disease doubles with every decade in
individuals older than 65 years of age. Based on age of onset, AD is classified as
early-onset (EOAD, onset age <65 years of age) and late-onset (LOAD, onset age
>65 years). Although most patients (>90% of diagnosis) develop LOAD, it is
mainly the research performed on the rare autosomal dominant familial
(EOFAD, <10% of the cases) that provided valuable insights into disease
pathogenesis (Tanzi & Bertram, 2005). More than 225 fully penetrant (causal)
mutations causing EOFAD were identified within three genes; the amyloid
precursor protein gene (APP) and the two presenilin genes (PSEN1 and PSEN2).
APP encodes amyloid-β precursor protein, precursor to Aβ plaques, while *PSEN1*
and *PSEN2* encode the enzymes that are involved in APP proteolysis. All these
mutations follow a common pathway of altering Aβ production leading to a
relative overabundance of the neurotoxic Aβ42 species that lead to neuronal cell
death and dementia (Reviewed in Tanzi & Bertram, 2005, and Scheuner et al.,
1996). While the heritability for the more common late-onset form of AD is
predicted to be as high as 80% based on twin studies (Gatz et al., 2006), over the
last decades only the apolipoprotein E gene (*APOE*) has been unequivocally
recognized as a major risk factor for late-onset AD (Tanzi & Bertram, 2005).
Nonetheless, variations in these four genes account for about 50% genetic
variation in AD, and the rest remain to determined (Bertram, McQueen, Mullin, Blacker, & Tanzi, 2007; Tanzi, 1999).

1.3 Current Status of AD Genetics

Efforts to map additional disease genes using linkage analysis have found evidence for multiple loci on more than ten different chromosomes (Bertram, 2008; Blacker et al., 2003). To date, more than three dozen genes have been implicated from studies of >2900 SNPs in about 700 genes, but almost none of them have been unambiguously confirmed (Bertram, et al., 2007). An up to date status on the genetics of LOAD can be found at http://www.alzgene.org (Bertram, 2008), and a list of EOFAD mutations can be found in the AD & FTD Mutation Database (Cruts, 2009). Importantly, all these reported genetic studies interrogated nucleotide substitutions (e.g. Single nucleotide polymorphisms i.e. SNPs, short insertions/deletions) and association with AD with one exception - duplication in the APP locus was identified to cause EOAD (segment length – 0.4 to 6.5 Mb) in numerous independent families (Rovelet-Lecrux et al., 2006). Replication of the APP duplication assay in our family samples confirmed the presence of the rare APP locus duplications in two EOAD pedigrees (<1% of the cases), but with incomplete penetrance (Hooli et al., manuscript submitted).
1.4 Structural variations in the genome

It has been more than 50 years since the first case of trisomy 21 was reported, caused by a pathogenic microscopic structural variation (duplication of entire chromosome 21) in the affecteds (Lejeune, Gautier, & Turpin, 1959). In 2004, increased availability of genome-wide DNA array technology led to full scale recognition and characterization of genomic structural alteration (Iafrate et al., 2004; Sebat et al., 2004) causing a drastic change in the perspective on the fluidity of the genome. Prior to these findings, the human genome was considered largely diploid with small repeat variations and base substitutions.

The term Structural Variations (SVs) is used in a wide context to refer to a microscopic to sub-microscopic alterations involving long segments of genomic DNA. SVs encompass quantitative variations, such as, deletions and duplications, translocational variations, and orientational alterations in the genomic segment i.e. inversions (Freeman et al., 2006). Database of Genomic Variants (version Nov. 2010, (DGV, 2011)) lists more than 100K SVs reported in humans, from more than 40 population genetic studies. Recent reports have provided large amounts of data on the frequency of SVs, functional relevance and other descriptions, but further information is needed to form a clear consensus on the characteristics of SVs. Nonetheless, previous estimates on
99.9% genetic similarity between two individuals are clearly seen as inaccurate, and it is fully apparent that SVs not only cause of rare ‘genomic disorders’ (Lupski, 1998) but are ubiquitous in normal individuals.

1.5 Copy Number Variations

Copy Number Variations (CNVs) are the quantitative and unbalanced alterations in normally diploid genomic loci. Feuk et al (Feuk, Carson, & Scherer, 2006) defined copy number variations somewhat arbitrarily to segments larger than 1 Kb to eliminate smaller variations, such as, segmental duplications (SDs), Variable Number Tandem repeats (VNTRs), micro- and mini-satellite repeats etc. CNVs are either deletions, or tandem or insertional duplications compared to a 'reference' genome, which results in perturbation of “normal” biological balance of the diploid state (Fig. 1-1). CNVs occur rarely in highly conserved regions, but gene rich regions have been found to have higher frequencies of CNVs indicating that structural variation is a property of the functional genome (Lupski, 2007).

1.6 Genomic effects of CNVs

CNVs are often found to be flanked by nearly identical blocks of sequence, such as, SDs, low-copy repeats (LCRs), Alu and LINE repetitive elements etc., and hence are abundant in the centromeric and telomeric regions in most organisms (Cooper, Nickerson, & Eichler, 2007). The repeat sequences facilitate
CNV generation (Gu, Zhang, & Lupski, 2008) by nonallelic homologous recombination (NAHR) due to unequal crossing over and misalignment in the DNA strands. Non-homologous end joining (NHEJ) is another recombination-based mechanism of CNV formation. NHEJ does not require LCRs and occurs when broken DNA strands are bridged, modified, and ligated incorrectly. The third mechanism recently reported is termed, Fork Stalling and Template Switching (FoSTeS). FoSTeS is attributed to the complexity in the genomic architecture characterized by unusual symmetry, and is found to facilitate an error-prone DNA replication mechanism resulting in CNVs (Stankiewicz & Lupski, 2010). CNVs are a key source of genetic variation key to phenotypic diversity and evolution, conversely also lead to disease pathogenesis, as observed in strikingly high number of CNVs per genome in cancer-prone individuals in Li–Fraumeni syndrome (Shlien et al., 2008) and neuroblastoma (Diskin et al., 2009). These observations, in addition to pathogenic deletions and duplications, have prompted investigations into occurrence of copy number polymorphism (CNPs) as an indication of genomic instability leading to disease pathogenesis. For example, extreme frequencies (too high and too low), de novo or change during transmission between generations (C. Lee & Scherer, 2010) etc. have been implicated in Autism spectrum disorders ASD (Sanders et al., 2011).
1.7 Functional Effects of CNVs

A recent study on gene expression level in lymphoblasts derived from HAPMAP individuals attributed 18% of the detected variation in expression levels of over 15,000 genes to overlapping CNVs (Stranger et al., 2007). Investigations of the roles of CNVs during evolution and their biological significance in health and diseases are rapidly progressing but still rudimentary (Beckmann, Estivill, & Antonarakis, 2007; N. P. Carter, 2007) and controversial (Gardiner, 2004).

In trisomy 21 cases, it is hypothesized that the chromosome 21 critical region containing a subset of dosage-sensitive genes determine the disease phenotype. Trisomy 21 patients show AD with cerebral amyloid angiopathy phenotype, also seen in few EOFAD families, prompting the identification of APP duplications as a potential cause of EOFAD (Rovelet-Lecrux, et al., 2006). The most common ways CNVs affect phenotypic variability is by alteration in transcription of genes that are sensitive to dosage affects. CNVs are also shown to have positional effects on genes 2 to 5 Mb (Weterman et al., 2010) away from the breakpoint, which also correlates with changes in the abundance of corresponding transcripts. Excess of a protein produced due to an increase in gene dosage may have various consequences, including (Cooper, et al., 2007;
Lupski & Stankiewicz, 2005; Stankiewicz & Lupski, 2010): protein misfolding in an age-dependent manner, overload in intracellular protein transport pathways, and proteosome degradation and recycling (commonly seen in neurodegeneration (Figure 1-1). Intracellular aggregation of proteins and inclusions could lead to dysregulation of pathways associated with the protein, enhance free radical formation, cause mitochondrial damage and dysfunction, and initiate apoptosis (J. A. Lee & Lupski, 2006). Absence or excess of the protein product of a dosage sensitive gene is another functional consequence of CNVs frequently investigated for influence on cell differentiation or migration, tissue formation etc., thus leading to various disorders. In addition to affecting transcript levels CNVs can alter phenotype by unmasking of recessive mutations of the remaining allele when deletion occurs (Figure 1-1) (J. A. Lee, Carvalho, & Lupski, 2007). Other complex mechanisms of CNVs induced phenotypes include (Henrichsen, Chaignat, & Reymond, 2009): gene-interruption, gene-fusion, unmasking of recessive alleles of silenced genes, and interruption of regulatory gene-gene and chromosomal interactions etc. (Kalman & Vitale, 2009).

Recent studies also report that CNVs overlapping LCRs include genes involved mainly in sensory perception and immune response, while CNVs not overlapping LCRs include genes involved with signaling (neurophysiology), development, cell growth, proliferation and differentiation (Cooper, et al., 2007).
These genes are known to be dosage sensitive and might affect neurocognitive skills/deficits, personality determinants, behavioral abnormalities, and psychiatric disorders. In line with this, several psychiatric disorders, including mood and anxiety disorders, have been associated with CNVs (J. A. Lee & Lupski, 2006).

In summary, CNVs confer phenotypes through several mechanisms in genomic disorders (Table 1-1). These include gene dosage effect at the transcription and translational levels, gene disruption, gene fusions at the junction, position effects in which the rearrangement alters the regulation of a nearby gene, and unmasking of recessive mutations or functional SNPs on the remaining allele (Lupski & Stankiewicz, 2005). CNV analysis could hence reveal novel genes and pathways of functional significance that may not have been obvious from studies of nucleotide level alterations.

1.8 Prevalence of CNVs

The Database of Genomic Variants (DGV) lists SVs in humans ascertained from various published sources. Redon et al (Redon, Ishikawa, Fitch, Feuk, Perry, Andrews, Fiegler, Shapero, Carson, Chen, Cho, Dallaire, Freeman, Gonzalez, Gratacos, Huang, Kalaitzopoulos, Komura, MacDonald, Marshall, Mei, Montgomery, Nishimura, Okamura, Shen, Somerville, Tchinda, Valsesia,
Woodwark, Yang, Zhang, Zerjal, Zhang, et al., 2006) reported the earliest
description of more than 1400 CNVs encompassing about 12% of the human
genome. The locus specific mutation rate for genomic rearrangements range
between 10^{-4} and 10^{-5}, at least 1000- to 10,000-fold more frequent than point
mutations (Korbel et al., 2007; Lupski, 2007; Redon, Ishikawa, Fitch, Feuk, Perry,
Andrews, Fiegler, Shapero, Carson, Chen, Cho, Dallaire, Freeman, Gonzalez,
Gratacos, Huang, Kalaitzopoulos, Komura, MacDonald, Marshall, Mei,
Montgomery, Nishimura, Okamura, Shen, Somerville, Tchinda, Valsesia,
Woodwark, Yang, Zhang, Zerjal, Zhang, et al., 2006). In line with the above
reports, various reports estimate more than 10X coverage of genomic alteration
by CNVs compared to SNPs. In comparison, HAPMAP reports estimate between
3 million to 10 million SNPs, depending on the ethnicity, in humans. However,
because each SNP affects only a single nucleotide, the overall genomic
representation is no more than 0.1% to 0.3% of the coverage in variation. In
addition, numerous studies using whole-genome sequencing data, attribute
about 1.3% of nucleotide variation was to CNVs (Gautam et al., 2011; Itsara et al.,
2009; Levy et al., 2007) confirming the assessment of the genomic coverage to the
same extent. However, the relative importance and abundance of the two
variations is still debated.
In summary, the past five years of research have provided remarkable insight into the occurrence of CNVs in ‘normal’ subjects. The frequency, pathogenicity, segment-size etc. are still being fully characterized owing to the refinement of the genotyping platforms and availability of whole-genome sequencing platforms.

1.9 CNP Studies

Nearly 1400 reports have been published in AD so far in the quest of finding novel additional genes that would explain the missing heritability. Like in many other human disorders, the genetic risk factors identified in large scale genome-wide association studies (GWAS) using SNPs have shown modest effects on AD onset. Importantly, recent reports strongly suggest that rare CNVs show potential in representing an important portion of missing heritability in complex disorders (Eichler et al., 2010; Manolio et al., 2009; F. Zhang et al., 2010). The outcome from GWAS of human diseases using CNPs as markers has been equally unfruitful (Conrad et al., 2010), thus undermining the hypothesis of common variant – common disease (Maher, 2008). In contrast, genetic studies in EOFAD have provided the most in-depth knowledge on the amyloidogenic pathway leading to AD. Also, in contrary to other neurodegenerative diseases, genes that cause EOAD have not been found to carry common alleles that alter
risk for LOAD (Bertram, 2011). Considering the above facts, the primary focus of the project is limited to identifying the presence of “rare” pathogenic variants in EOFAD pedigrees.

The other limitation in utilizing copy number (CN) data as markers comes from the genotyping platforms (C. J. Carter, 2007). The current platforms that are cost affective and amenable for large scale genome-wide analysis for genetic variants are limited to oligonucleotide based DNA array panels. Paired-end whole genome sequencing is expensive, and still in the early stages to be used in such large number of affected families (Alkan et al., 2009; Bentley et al., 2008; McKernan et al., 2009). CNVs of 1–50 kb in size still remain under-ascertained even though the DNA array technology and CNV-segmenting software algorithms have evolved rapidly in the past few years (J. I. Kim et al., 2009; J. Wang et al., 2008). Additionally, CNVs of pathological consequence are more likely to be large (encompassing many genes and/or regulatory sequences), and to involve loss, rather than gain, of genomic material, even though data from early studies are somewhat biased because of the relative ease of ascertainment of deletions and larger segments using SNP arrays (Lin et al., 2011).
Overall, in order to reduce chances of false positive findings, and to narrow down on functionally relevant and rare CNVs, we limit the size of the CNV segments to >100 Kb in the current study.

1.10 CNV Analysis Strategy

Preliminary analyses for CNVs in two previously known AD susceptibility loci (APP and PSEN1) revealed CN gains spanning APP, but none were found to involve PSEN1. These results are in line with previous reports (Domingues-Montanari et al., 2011; McNaughton et al., 2010), suggesting highly penetrant CNVs are a rare cause in EOFAD explaining less than 0.1% of the familial cases (Hooli et al, submitted). Since CNVs contributing to the disease are not localized to any specific loci (Sebat et al., 2007) and AD linkage studies indicate numerous loci on multiple chromosomes, we undertook genome-wide investigation of rare, large, and highly penetrant CNVs that segregate with disease in EOFAD pedigrees showing Mendelian patterns of disease inheritance.

Figure 1-2 gives an overview of CNV analysis strategy of the project. The discovery of de novo and inherited CNVs causing diseases is fairly new, and is complicated by the lack of understanding and characterization of CNPs (Alkan, Coe, & Eichler, 2011). There are few studies that examine contribution of CNVs to disease risk and a few strategies have only been suggested recently (Sebat, et
al., 2007; Weiss et al., 2008). Since the frequency and end-points of CNPs in normal population are not fully characterized, distinguishing and eliminating these from disease related CNVs is a challenge. Using EOAD families, where genetic contribution to the disease onset is more pronounced, the experimental design and data analysis strategy are limited to identifying large, and rare disease-causing CNVs, hence CNPs reported in DGV were not included in the study.

A total of 261 families with “early/mixed” onset age were included in the study: 131 families (517 subjects [316 affecteds, onset age 64.5+9.5]) from the National Institute of Mental Health (NIMH, (Go et al., 1997)) sample set and 130 families from (498 subjects [332 affecteds, onset age 63.3+9.2]) National Cell Repository for Alzheimer's Disease (NCRAD, (Wijsman et al., 2011)). DNA samples were processed on Genome-Wide Human SNP Array 6.0 developed by Affymetrix Inc., which incorporates about 1.8 million probes (25-mer nucleotide sequence), including more than 906,600 targeting known HAPMAP SNPs and more than 946,000 non-polymorphic probes for the detection of CNVs in human genome. The resulting array probe intensity data from all the samples were normalized using custom ‘reference intensity library’ and CNV segmentation was performed using PennCNV (K. Wang et al., 2007). CNV segments >100 Kb, showing <70% overlap with CNPs reported in DGV, and not present in
unaffected subjects in the entire NIMH and NCRAD (n=816) were analyzed for segregation with disease. The 70% cut-off range was chosen based on previous reports (DGV, 2011; Iafrate, et al., 2004; J. Zhang, Feuk, Duggan, Khaja, & Scherer, 2006) and twin studies (Maiti, Kumar, Castellani, O'Reilly, & Singh, 2011) discerning CNVs vs. CNPs. CNVs that passed the three criteria and segregated with disease status in EOFAD pedigrees were listed for confirmation using fluorescence in situ hybridization (FISH, (Mohapatra et al., 1997)) and/or Fluidigm digital arrays (Qin, Jones, & Ramakrishnan, 2008; Weaver et al., 2010). Highest priority was given to CNVs present in families that overlapped with AD functional candidate genes and did not carry the APOE-ε4 risk allele.

1.11 Ongoing functional studies

Considering the phenotypic impact of CNVs from recent reports (Kalman & Vitale, 2009; C. Lee & Scherer, 2010), we reasoned that investigating mRNA and protein expression level differences in the genes encompassed by CNVs could reveal dysregulation of associated molecular pathways leading to EOAD, if any. However, given the time- and resource- constraint of a doctoral research project, determining gene expression by quantitative real-time (qPCR) and western blot analysis, in parallel to gene knock-down and over-expression experiments is likely to extend beyond realistic time-frame. Nevertheless, we are
making efforts to perform pilot experiments in collaboration with other groups with expertise in functional assays and prioritize few ‘top-hit’ genes for in-depth studies on functional consequences leading to AD pathogenesis. In addition, sequencing analysis for pathogenic mutations in candidate genes (that are overlapped by the CNVs) are expected to be complete before manuscript submission.

1.12 Summary

In summary, knowledge about human genetic variation was limited mainly to the heterochromatin polymorphisms, large enough to be visible in the light microscope in the last few decades of the twentieth century. The traditional PCR-based DNA sequencing helped characterize SNPs and build a complete human reference genome, providing great insight into genomic variation in humans. Consequently, similar to numerous other spectrum of human diseases, the majority of the AD genetics studies published to date are based solely on nucleotide level changes, such as SNPs and mutations, with three exceptions (Brouwers et al., 2011; Heinzen et al., 2010; Shaw et al., 2011).

On the other hand, the past five years has seen significant development and refinement in microarray technologies, including oligonucleotide arrays, comparative genomic hybridization and SNP genotyping arrays, as well as, next-
generation sequencing with “paired-end” methods, enabling whole-genome analysis with almost unlimited resolution. The discovery of submicroscopic copy-number variations (CNVs) revealed in human genome has changed our perspective dramatically on DNA structural variation and disease pathogenesis. In view of the new findings, investigation of large, rare and highly penetrant CNVs that cause EOFAD could hold clues to missing AD heritability, as well as, provide novel insight into the disease onset. The results hold enormous potential to further our understanding of AD pathogenesis and to aid in discovery of therapeutic interventions for this devastating disease.
Table 1-1: Partial list of human neurological disorders attributed to CNVs.

<table>
<thead>
<tr>
<th>Neurological disorder</th>
<th>Gene(s)</th>
<th>CNV</th>
<th>Phenotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alzheimer's disease</td>
<td>APP</td>
<td>Gain</td>
<td>Heterozygous duplication in APP leading to (increased Aβ 42/Aβ 40 ratio) and EOFAD.</td>
</tr>
<tr>
<td>Parkinson's Disease</td>
<td>SNCA</td>
<td>Gain</td>
<td>Dose dependent increase in misfolded α-synuclein in Lewy bodies and neuronal loss.</td>
</tr>
<tr>
<td>Tuberous sclerosis</td>
<td>TSC1 or TSC2</td>
<td>Loss</td>
<td>Loss in tumor growth suppressors causing growth of non-malignant tumors</td>
</tr>
<tr>
<td>SMA</td>
<td>SMN1, SMN2</td>
<td>Loss and modifier effects</td>
<td>CN of SMN2 buffers lack of SMN1 protein, modifying motor neuron loss and muscular atrophy</td>
</tr>
<tr>
<td>Disease</td>
<td>Gene</td>
<td>CNV Type</td>
<td>Pathogenesis</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td>HNPP and CMT1a</td>
<td>PMP22</td>
<td>Loss and Gain</td>
<td>Demyelination leads to neuropathy or nerve palsies</td>
</tr>
<tr>
<td>ASD</td>
<td>Multiple</td>
<td>Loss and Gain</td>
<td>Neurodevelopmental abnormality due to changes in glutaminergic synaptogenesis</td>
</tr>
<tr>
<td>Schizophrenia</td>
<td>Multiple</td>
<td>Complex re-arrangements</td>
<td>Mental disorder characterized by a disintegration of thought processes and of emotional responsiveness</td>
</tr>
</tbody>
</table>

Table 1-1 Legend: The table above lists a few examples of neurological diseases attributed to CNVs overlapping dosage sensitive genes. The increase or decrease in the transcribed protein in a dose dependent manner due to changes in gene copy number leads to pathogenesis of diseases. In case of autism and schizophrenia, where the phenotypes in the patients are heterogeneous, rare complex re-arrangements in multiple genomic loci are reported to lead to disease manifestation. A more detailed list can be found in Table 5-1 (page 84) and in reviews elsewhere (Kalman & Vitale, 2009; C. Lee & Scherer, 2010).
Figures

<table>
<thead>
<tr>
<th>CNV</th>
<th>Illustration</th>
<th>Genotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Diploid</td>
<td></td>
<td>Normal</td>
</tr>
<tr>
<td>B. Loss</td>
<td></td>
<td>Heterozygous deletion</td>
</tr>
<tr>
<td>C. Gain</td>
<td></td>
<td>Tandem duplication</td>
</tr>
<tr>
<td>D. Disruption</td>
<td></td>
<td>Regulatory element deletion</td>
</tr>
<tr>
<td>E. Unmasking Recessive Allele</td>
<td></td>
<td>Regulatory element disruption</td>
</tr>
</tbody>
</table>

Figure 1-1: Illustration of CNVs in the genome and examples of ensuing effect on phenotypic variability. Panel A shows a diploid genome, with one copy of the focal gene being inherited from each parent in the offspring. Panel B shows loss in the genomic loci. Both heterozygous and homozygous CN loss result in
loss of function and disruption of gene expression, and are associated with various human disorders (Lupski & Stankiewicz, 2005). Panel C shows gain in CN in the genomic locus causing increase in gene copy numbers and also dysregulation of gene expression up to 5 Mb away (Weterman, et al., 2010). CNVs confer phenotypes through other mechanisms in genomic disorders ((Panel D and E), including transcriptional and translational level alterations, gene disruption, gene fusions at the junction, position effects in which the rearrangement alters the regulation of a nearby gene, and unmasking of recessive mutations or functional SNPs on the remaining allele.
Figure 1-2: Overview of CNV analysis workflow in EOFAD family samples. In Aim 1 of the project (Steps 1 to 3), CNVs were identified and confirmed in the EOFAD subjects using the whole genome DNA array data using PennCNV.
PennCNV is a well-established software tool that implements a hidden Markov model (HMM) integrating multiple sources of information to infer CNV calls for individual genotyped samples (using raw probe intensity data). It differs from segmentation-based algorithm in that it considers SNP allelic ratio distribution as well as other ‘quality’ factors, in addition to signal intensity alone. PennCNV analysis revealed CNV segments larger than 100 Kb in all the tested samples. Previously reported copy number polymorphisms (CNPs) from DGV (that are present in ‘normal’ individuals) were eliminated from further analyses. In Aim 2 (step 4), to confirm presence of CNV regions that segregate with disease in affecteds were tested for confirmation using FISH and Fluidigm digital arrays. In Aim 3 (Step 5), candidate genes associated (affected) by the CNVs were short-listed for functional studies to assess their role in AD pathogenesis, further confirming the pathogenic effects of the CNVs. The exons, 5’ and 3’ untranslated regions in the candidate genes were also re-sequenced to identify presence of any pathogenic mutations, which could compromise the gene functionality similar to the effect of the CNVs.

Highest priority was given to genes that show disease segregation with multiple families and/or genes that map to the linkage regions and/or loci that harbor functional candidate genes. CNVs/genes present in pedigrees that did not carry APOE-ε4 allele were given the highest priority.
CHAPTER 2: A CURRENT VIEW OF ALZHEIMER’S DISEASE

2.1 Abstract

Several genes that influence susceptibility to Alzheimer’s disease (AD) have been known for over two decades. Recent advances have elucidated novel candidate genes and the pathogenetic mechanisms underlying neurodegeneration in AD. Here, we summarize what we have learned from studies of the known AD genes with regard to the causes of AD and emerging therapies. We also review key recent discoveries that have enhanced our understanding of the etiology and pathogenesis of this devastating disease, based on new investigations into the genes and molecular mechanisms underlying AD.

2.2 Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the leading cause of dementia in the elderly. As the incidence and prevalence of AD rise steadily with increasing longevity, AD threatens to become a catastrophic burden on health care, particularly in developed countries (General-Information, 2009). AD patients typically present with symptoms of global cognitive decline and loss of memory. Pathologically, the disease is characterized by excessive deposition of amyloid protein fragments (senile plaques), neurofibrillary tangles, synapse and neuronal loss, and inflammation in the
brain. Among the major risk factors for AD, the strongest is increasing age followed by family history (Bertram, et al., 2007), gender (females at greater risk than males), and stroke/head trauma.

2.3 Genetics of AD

To date, more than 200 rare and fully penetrant autosomal-dominant mutations in three genes, the amyloid precursor protein (APP) and presenilin genes (PSEN1 and PSEN2), have been shown to cause the early-onset (<60 years) familial form of AD (EO-FAD), which accounts for <10% of AD cases (Cruts, 2009). On the other hand, a common variant, ε4, in the gene encoding apolipoprotein E (APOE) is the only confirmed genetic risk factor for the late-onset form of AD (LOAD) (>90% of AD cases). Overall, these four genes together account for less than 50% of the genetic variance in AD, and the quest to identify the remaining genes has been challenging due to the complex and heterogeneous nature of the disease (Tanzi & Bertram, 2005). Several genes besides APOE have yielded significant evidence (based on meta-analyses) for association with LOAD, but with only modest effects (Bertram, et al., 2007).

2.4 Molecular pathology of AD

Arguably, the genetic discoveries mentioned above have driven our current understanding of the underlying molecular basis of AD more than any other findings. The proteolytic processing of APP and production of the major
component of β-amyloid, Aβ peptide, by two proteases known as β- and γ-secretase are key events in the pathogenesis of disease. The Aβ peptide has two major forms, Aβ40, which makes up approximately 90% of Aβ in the brain, and Aβ42, which comprises approximately 10%. In addition, the hyper-phosphorylation and aggregation of the microtubule-associated tau protein drive neurofibrillary tangle formation within neurons. Most of the mutations in the EO-FAD genes increase the ratio of Aβ42/Aβ40. The longer form of the peptide, Aβ42, is considered to be the more neurotoxic species as it enhances the aggregation of Aβ into neurotoxic oligomers and senile plaques. Recent studies indicate that Aβ42 oligomers and neurofibrillary tangles lead to the disruption of synaptic neurotransmission, neuronal cell death, and inflammation in the hippocampus and cerebral cortex, thereby causing loss of memory and global cognition dysfunction.

2.5 Therapeutics in AD

Currently available drugs for AD, such as cholinesterase inhibitors (for example, Aricept®) and the glutamate antagonist Namenda®, treat mainly the symptoms, with no known effects on disease progress. Another drug, dimebolin, which is currently in clinical trials, is a retired antihistamine that is purported to be neuroprotective based on stabilizing mitochondria. Given that all four of the established AD genes lead to enhanced accumulation of Aβ42 in the brain (EO-
FAD genes via increased production of the peptide, while APOE via decreased clearance), most of the current AD therapies in development are aimed at either curbing Aβ42 production/aggregation or potentiating its degradation/clearance. This is being attempted with inhibitors and modulators of the β- and γ-secretases, compounds that attenuate Aβ aggregation (for example, by preventing interaction of the peptide with copper and zinc), and anti-Aβ immunotherapy aimed at stimulating the degradation of the peptide (Selkoe, 2007).

2.6 Major recent advances
2.6.1 Genetics

Given the strong genetic predisposition of AD, there have been a huge number of studies testing for genetic association with AD, including over 1,500 polymorphisms in over 500 candidate genes. As with most complex genetic disorders, the AD genetics field is rife with replications and refutations for hundreds of candidate genes. Recently, an online database known as ‘AlzGene’ has revolutionized our ability to follow and interpret these findings.

AlzGene (www.alzgene.org) (Bertram, et al., 2007) is a publicly available database that provides up-to-date results of all genetic association reports since 1978. More importantly, it provides systematic meta-analyses for all polymorphisms (>200) tested in at least four independent study samples. After APOE, the gene with the strongest genetic effect reported on AlzGene was CHRNB2, which encodes the beta-2 subunit of the nicotinic cholinergic receptor.
This is particularly interesting given that several drugs currently in clinical trials for AD target the nicotinic receptor. The advent of high-throughput genotyping arrays has also enabled ‘unbiased’ genome-wide screening to identify novel AD genes.

To date, six novel LOAD genes have been reported with genome-wide significance (Beecham et al., 2009; Bertram, Lange, et al., 2008; Carrasquillo et al., 2009; Feulner et al., 2009). One of these, ATXN1 (ataxin 1), is the gene responsible for another neurodegenerative disorder, spinal cerebellar ataxia 1, and another is CD33, a lectin involved in the innate immune system (Bertram, Lange, et al., 2008).

2.6.2 Beta-amyloid toxicity

It is widely accepted that excessive β-amyloid deposition in the brain is a key factor in the pathophysiology of AD (Tanzi & Bertram, 2005). Valuable clues concerning the mechanism by which Aβ aggregates lead to cognitive dysfunction have emerged over the last several years. The original amyloid cascade hypothesis maintained that all AD neuropathology, including neuronal cell loss, generation of neurofibrillary tangles, and inflammation, occur downstream of senile plaque formation. However, the amyloid cascade hypothesis fails to explain the weak correlation between amyloid deposition and the clinical degree of dementia in AD (Bush & Tanzi, 2008). Moreover, the decline in cognition
correlates best with synaptic loss and not plaque counts, implying that synaptic perturbations cause AD and precede amyloid plaque deposition (Jacobsen et al., 2006; Selkoe, 2008).

A spate of recent studies has initiated a paradigm shift regarding the molecular mechanism by which Aβ deposition leads to cognitive dysfunction. Over the past several years, it has become increasingly apparent that Aβ oligomers (for example, dimers) exert detrimental effects on synaptic function. More specifically, soluble Aβ oligomers have been shown to specifically impair long-term potentiation (LTP) and promote synaptotoxicity. This has led to the synaptic Aβ hypothesis (Tanzi, 2005), which maintains that free and soluble Aβ oligomers, either produced within the synapse or entering from outside, impair LTP (Figure 2-1). Furthermore, several reports indicate that Aβ oligomers trigger the internalization of post-synaptic AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor)- and NMDA (N-methyl-D-aspartic acid)-type glutamate receptors (Hsieh et al., 2006; Yamin, 2009), leading to loss of spines and inhibition of LTP (Figure 2-2) (Lacor et al., 2007; Shankar et al., 2008; Tanzi, 2005; Venkitaramani et al., 2007; Walsh et al., 2002). More recently, high-affinity binding between Aβ and the cellular prion protein PrPc has been reported, suggesting that PrPc could be an important mediator in Aβ oligomer-induced synaptic dysfunction (Lauren, Gimbel, Nygaard, Gilbert, & Strittmatter, 2009).
Understanding the interaction between Aβ and other cellular factors could provide new therapeutic potential in restoring the synaptic plasticity and possibly reversing AD symptoms.

2.7 Future directions

Recent advances have enabled the identification of novel AD genes as well as new insights into the causes of memory and cognitive dysfunction in AD. Genome-wide association studies are gradually elucidating the genetic basis of AD, similar to the case for schizophrenia and autism (Stefansson et al., 2008; Weiss, et al., 2008), by revealing gene defects and affected biological pathways. Meanwhile, advances in understanding how Aβ impairs cognition at the synaptic level could provide new therapeutic modalities for treating and preventing AD based on restoring synaptic plasticity.
FIGURES
Axonal Terminal

Synaptic Cleft

Unknown Aβ42/Receptor Interaction

Receptor Endocytosis

Synaptic Vesicles

Aβ42

Neurotransmitters

AMPA Receptor

NMDA Receptor

APP

Aβ42 Oligomers

Aβ42

APP

Aβ42 Oligomers

Neurotransmitters

AMPA Receptor

NMDA Receptor
Figure 2-1: Aβ-induced internalization of synaptic NMDA and AMPA receptors. Soluble Aβ oligomers promote receptor endocytosis, reducing the density of the receptors at the synapses. Aβ is secreted into the synaptic cleft via sequential cleavage of presynaptic amyloid precursor protein (APP) (internally or at the cell surface) by β-secretase and γ-secretase or gains entry from outside the synapse. The accumulation of Aβ oligomers in the synaptic cleft leads to reduced NMDA and AMPA receptor density in synapses, leading to attenuated long-term potentiation (LTP) and neurotransmission. While Aβ oligomers may play a normal role in controlling LTP, accelerated synaptic accumulation of Aβ oligomers (for example, due to familial Alzheimer’s disease [AD] gene mutations) may lead to a toxic gain of function and cognitive decline.
Figure 2-2: Synaptic Aβ hypothesis. Increased accumulation of synaptic Aβ oligomers promotes endocytosis of NMDA and AMPA receptors, leading to a reduction in dendritic spines and reduced LTP. Acceleration of this process could lead to a toxic gain of function in the form of an imbalance in the LTP/long-term depression (LTD) ratio. This, in turn, causes synaptic dysfunction, spine loss, and (potentially) synaptic loss, leading to cognitive decline and AD. Aβ42, amyloid-β-protein 42-mer; AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; NMDA, N-methyl-D-aspartic acid.
CHAPTER 3: THE ROLE OF COMMON AND RARE APP DNA SEQUENCE VARIANTS IN ALZHEIMER’S DISEASE

3.1 Abstract

3.1.1 Objectives: Over 30 different rare mutations, including copy number variants (CNVs), in the gene encoding amyloid precursor protein (APP) cause early-onset familial Alzheimer’s disease (EOFAD), while the contribution of common APP variants to disease remains controversial. In this study we systematically assessed of the role of both rare and common APP variants in several collections of well-characterized Alzheimer’s disease (AD) families.

3.1.2 Methods: Starting with EOFAD families genetically linked to the APP-region on chromosome 21q21 we screened for missense mutations and locus duplications in APP. Next, using genome-wide DNA array data we examined APP locus for CNVs in a total of 797 additional early and late onset AD pedigrees. Finally, 62 SNPs in APP locus, including two promoter polymorphisms previously reported to modulate AD risk were tested for association in 1373 independent multiplex AD families.

3.1.3 Results: Analyses of eight 21q21 linked families revealed one family carrying a non-synonymous mutation in exon 17 (Val717Leu) and another family with a partially penetrant 3.5 Mb locus duplication encompassing APP. Analysis for CNVs in APP locus revealed an additional family carrying a fully penetrant
380 Kb duplication, merely spanning *APP*. Lastly, in contrary to previous reports, analyses of SNPs in *APP* failed to show significant effects on AD risk or onset age.

3.1.4 **Conclusion:** Our study shows that *APP* mutations and locus duplications are a very rare cause of EOFAD, whereas common variants in *APP* probably make no large contribution to AD risk or onset age variation. Furthermore, our results indicate that *APP* duplications may not be fully penetrant, possibly indicating the existence of protective factors that can sufficiently offset the consequences of possessing an additional copy of *APP*.
3.2 Introduction

Highly penetrant mutations in the gene encoding APP \((APP, 21q21.2)\), were the first reported genetic causes of EOFAD (Goate et al., 1991). Most of the currently known AD-causing \(APP\) mutations lead to an increase in the ratio of the \(A\beta_{42}\) to \(A\beta_{40}\) peptide (Tanzi & Bertram, 2005; Wolfe, 2007) and synaptic \(A\beta\) levels (Hooli & Tanzi, 2009). AD pathology together with cerebral amyloid angiopathy (CAA) is also found in patients with Down’s syndrome (DS), i.e., trisomy of chromosome 21, indicating that extra copies of \(APP\) alone may lead to neurotoxic \(A\beta\) production in the absence of any missense mutations. Along these lines, several reports have recently shown the presence of \(APP\) locus duplications as a causative factor in EOFAD (Kasuga et al., 2009; McNaughton, et al., 2010; Rovelet-Lecrux et al., 2007; Rovelet-Lecrux, et al., 2006; Sleegers et al., 2006). Similar to DS the majority of duplication carriers also show pronounced CAA upon neuropathological examination. Finally, recent candidate-gene studies have also implicated the existence of rare (minor allele frequency [MAF] \(\leq 0.0093\% \) \((7/750)\)) variants in the \(APP\) promoter to result in EOFAD, presumably by increasing \(APP\) expression (Brouwers et al., 2006; Theuns et al., 2006), although these findings have been refuted elsewhere (Athan, Lee, Arriaga, Mayeux, & Tycko, 2002; Bettens et al., 2009; Guyant-Marechal et al., 2007; Hebert et al., 2009; Kocerha, Kauppinen, & Wahlestedt, 2009; Maes, Chertkow, Wang, & Schipper, ...
In this study, we set out to thoroughly investigate the role of both rare and common APP DNA sequence variants in several large collections of both EOFAD as well as late onset AD (LOAD) families. Using microsatellite marker data generated in the context of a genome-wide linkage study in families of the National Institute of Mental Health (NIMH) AD Genetics Initiative study sample (Blacker, et al., 2003), we began by sequencing exons 16 and 17 in eight EOFAD families (Table 3-2), which individually showed evidence for genetic linkage to the chromosomal region encompassing APP. We then tested these linkage families for presence of APP locus duplications using Semi-Quantitative Multiplex PCR (sQM-PCR). Owing to the availability of the recently generated genome-wide DNA microarray data, we investigated the remaining families in NIMH sampleset, in addition to 368 pedigrees from an independent collection of AD families (National Cell Repository for AD, NCRAD) for APP locus duplications. Finally, we tested all SNPs within a 400 kb window encompassing APP for association with AD risk or onset-age variation (Bertram, Lange, et al., 2008). Additionally, we tested two APP promoter SNPs previously reported to be
associated with AD risk in candidate gene studies which were not included on the Affymetrix array (rs463946 [-3102G/C] and rs459543 [+37C/G] (Athan, et al., 2002; Guyant-Marechal, et al., 2007)) in families from the NIMH and NCRAD data sets as well as two other independent collections totaling nearly 4,200 subjects from 1373 families.

3.3 Results

The eight EOFAD (Table 3-2) families showing linkage at or near the APP region were re-sequenced for mutations in APP exons 16, 17, the promoter region (-1 to -676 kb), and the 3’ untranslated region (UTR; 1 to 1,221 bp). In addition, these families were also tested for APP locus duplications using sQM-PCR, and subsequently confirmed by fluorescence in situ hybridization (FISH, Figure 3-3). One family (VII) carried a previously reported and fully penetrant missense mutation in exon 17 (Figure 3-1, Val717Leu, rs63750264 G>C, “Indiana-2” (Murrell, Hake, Quaid, Farlow, & Ghetti, 2000)). The onset age of AD in this family was between the ages of 45 and 58, while the 3 unaffected individuals were between 62 and 79 years of age at last examination. The clinical diagnosis of AD was confirmed neuropathologically in two affected individuals of this pedigree (VII-II.3, VII-II.1), while the other two received a diagnosis of "probable" (VII-II.2 and VII-II.4) AD. A second chromosome 21 linked family (VI,
Figure 3-1 Family VI, and Figure 3-2) was found to carry APP locus duplication which, in contrast to previous reports, only showed partial penetrance. Using genome-wide microarray data we were able to delineate the size of the duplicated segment to ~3.4 Mb (Figure 3-2). In this family, the duplication was present in all three affected individuals (onset ages: 43-50 years; all AD diagnoses confirmed by neuropathological examination), but also in one unaffected individual (last age at examination: 60 years; VI-II.4, while no duplication was found in the remaining unaffected sibling (78 years; VI-II.5; Figure 3-1). Tests for expression level differences of APP mRNA and protein, as well as Aβ levels, in Epstein-Barr Virus-transformed lymphoblastoid cell lines of all members of this family did not show significant differences between carriers and non-carriers of the APP duplication, regardless of affection status (data not shown). This is in line with earlier reports indicating that pathologically relevant increases in APP/A expression may be restricted to the brain and is not detectable in peripheral cells (Theuns, et al., 2006). Unfortunately, brain samples were not available for any member of this family.

Analysis for CNVs in APP in the microarray data from the remaining 429 NIMH families and 368 NCRAD families, revealed one family in the NCRAD dataset (Figure 3-1, BRB) carrying APP locus duplication, subsequently confirmed using Fluidigm digital array (Table 3-3). Although fully penetrant, this
latter duplication is interesting for two reasons. First, the duplicated segment extends over just ~0.4 Mb, i.e. approx. 10-fold smaller than the duplicated segment identified in the NIMH family. Barely encompassing the entire genomic interval of APP, this segment represents the shortest APP duplication identified to date (see Figure 3-2). Second, the duplication was carried by only two of three affected siblings in this family (onset ages: 49 and 52 years), while a third affected individual (onset age: 70) showed a diploid, i.e. normal, copy status in this region. Similarly, the two unaffected siblings (ages at last examination: 69 and 74) also showed no evidence for a duplication of the APP region. Thus, this family coalesces the sort of genetic heterogeneity that is typical of AD (and several other neurodegenerative disorders), i.e. the presence of likely disease-causing and susceptibility-increasing factors.

Finally, association analyses of 62 common SNPs located within a 400 kb interval encompassing APP was undertaken using microarray SNP genotype data using both a binary (affection status) as well as quantitative (onset age) phenotype definition (Bertram, Lange, et al., 2008). However, none of these analyses displayed even a statistical trend towards association with either phenotype (Data not shown). In addition, we also failed to observe significant effects on disease risk or onset age with two (Athan, et al., 2002; Guyant-Marechal, et al., 2007) SNPs in the APP promoter region (rs459543 [+37c/g],
rs463946 [-3102G/C]) previously reported to be associated with AD risk. Since these SNPs were not included on the Affymetrix microarray they were manually genotyped in nearly 4,200 individuals originating from four independent family data sets with which we had >70% power to detect the previously reported effect sizes (Table 3-1). These altogether negative association findings using common polymorphisms are in line with recent genome-wide association studies (GWAS) reporting no evidence of association with markers near the APP region (see the AlzGene database for a list of all GWAS performed in AD).

3.4 Discussion

We undertook a systematic assessment of the contribution of rare and common APP DNA sequence variants across large collections of independent AD family samples. Mutational screening of EOFAD families linked to the APP-encompassing region on chromosome 21 revealed one family carrying a previously reported missense mutation at codon 717 (Val717Leu; "Indiana-2"), and one family carrying a duplication of the APP locus. While the missense mutation showed complete penetrance in the affected family, the occurrence of one unaffected individual in the family VI carrying the APP duplication at > 3 S.D. from the average familial onset age is strongly indicative of incomplete penetrance, implying existence of yet unidentified "protective" factors. While it
can currently not be definitively excluded that this individual will not also
develop AD at some later time, our findings already suggest that other genetic
and/or non-genetic factors can mitigate the effects of APP locus duplications and
either confer complete protection against AD, or at least substantially delay its
onset age. In the currently available literature there is one other report in which
an unaffected individual was also found to carry an APP duplication (individual
III.21 in family 1104 reported in Sleegers et al (Sleegers, et al., 2006). However,
the last age of examination of this individual is still within 1 standard deviation
of the average familial onset age, while the difference is greater than 3 standard
deviations in the unaffected sibling in family VI. The second, independent APP
duplication observed in our study (family BRB in the NCRAD data set)
represents the smallest reported duplicated interval on chromosome 21,
effectively reducing the obligate AD-causing region to less than 0.4 Mb
(chr21:26,122,781-26,521,135, NCBI36/hg18 assembly). To the best of our
knowledge, it is also the first example of an APP duplication co-occuring with
another cause of AD within the same pedigree. Aggregating the CNV data across
different studies published to date (see Figure 3-2) suggests that most (if not all)
instances of locus duplications in this chromosomal interval are not linked to the
same founder individuals, but rather have occurred independently from one
another. Overall, these results suggest that APP duplications are a rare cause of EOFAD, and extremely rare (if not absent) in LOAD.

Contrary to these findings confirming and extending prior evidence, we were unable to corroborate the presence of sequence variants in the APP promoter, neither as causative nor as risk factors for AD. This includes variants 534G→A, 479C→T, 369C→G and 118C→A, which have previously been suggested to cause AD by increasing expression levels of APP (Theuns, et al., 2006). None of the NIMH chromosome 21-linked families carried any mutations in the APP promoter region, including the variants described above. Our failure to detect mutations at these sites are in agreement with data reported by Guyant et al. – who actually found a higher frequency of the presumed disease-causing alleles in their healthy controls as compared to AD cases. Taken together, these data suggest that the previously proposed causative role on AD neuropathogenesis of these promoter sequence variants is unlikely to be real.

Finally, genetic association analyses of more than 60 common variants, including two common APP promoter polymorphisms previously reported to show association with LOAD, did not reveal any significant evidence for association with either risk for AD or onset-age variation. Our negative association results are in line with, and substantially extend, a recent study
investigating 44 SNPs in almost 1,200 cases and controls from the US (Nowotny et al., 2007), although that study did not directly test the two previously associated promoter SNPs (rs459543 and rs463946) that were investigated here. In addition, none of the currently published GWAS in AD (see www.alzgene.org for details), reported significant association between risk for AD and common sequence variants in or near APP, providing further evidence against the notion that common variants in this gene contribute to risk for LOAD. While this is similar to the largely negative association findings with common variants in the other two EOFAD genes, PSEN1 and PSEN2 (presenilin 1 and 2), it is in contrast to other neurodegenerative disorders for which genes known to contain rare, disease-causing variants giving rise to disease forms transmitted in a Mendelian fashion are also among the lead GWAS findings using common polymorphisms, e.g. Parkinson’s disease or frontotemporal dementia (Bertram, 2011).

In conclusion, our comprehensive and systematic analyses investigating the role of APP in AD genetics suggest that missense mutations in APP and locus duplications are a rare cause of AD, while common variants in APP probably play no major role, if any, in contributing to risk for AD. In addition, the incomplete penetrance of APP locus duplication observed in family VI emphasizes the need to more systematically search for “protective” variables. A better understanding of these risk-reducing factors may be essential for
developing better and more effective early prevention and treatment strategies against this devastating disorder.
3.5 Materials and Methods

3.5.1 Participants

3.5.1.1 NIMH families: In total, this sample includes 1536 individuals from 457 multiplex AD families (Blacker et al., 1997). Of these, 131 pedigrees (517 subjects [316 affecteds, onset age 64.5±9.5]) are from families with an “early/mixed” onset age, i.e., at least one sampled affected showed an onset age <65), while in the remaining pedigrees all sampled affecteds showed an onset age of 65 or above. Age of onset for all AD cases was determined by a clinician based on an interview with a knowledgeable informant and review of any available records. From our earlier whole-genome linkage screen on these families (Blacker, et al., 2003), we identified 8 families in the early/mixed onset-age stratum that showed evidence of genetic linkage to the region encompassing APP at ~26 Mb (i.e., between markers D21S1437 at ~20 Mb and D21S1440 at ~38 Mb; Table 3-2).

3.5.1.2 NCRAD and additional independent family samples: In addition to the NIMH families, we analyzed members of three independent AD family collections. Two of these were obtained from the National Cell Repository for Alzheimer's Disease (NCRAD), and ascertainment and collection details can be found at the NCRAD website (http://www.ncrad.org). The collection of families labeled here as “NIA” comprised 1,111 samples from 351 pedigrees (Caucasian:...
1,040 samples from 329 pedigrees). The collection of families labeled here as “NCRAD” comprised 1260 samples from 368 pedigrees (Caucasian: 1,106 samples from 330 pedigrees). Finally, the collection of families labeled “CAG” originated from multiple NIA-funded Alzheimer’s Disease Research Centers (ADRCs) under the auspices of the “Consortium on Alzheimer’s Genetics”.

Probands were included only if they had at least one unaffected living sibling willing to participate in this study. For all non-NIMH families we only included pedigrees in which all sampled affected individuals had onset ages of at least 50 years.

Note that different combinations of these family samples were used in different parts of our study. APP sequencing was performed in chromosome 21 linked NIMH families only. APP CNV and common marker association analyses were performed on all remaining NIMH and all the NCRAD families. Lastly, members from all four family samples (i.e. 4,180 individuals) were genotyped for the two previously associated APP promoter SNPs (rs459543 [+37c/g], rs463946 [-3102G/C]).

3.5.2 Experimental procedures

3.5.2.1 Sequencing: 30 ng of genomic DNA was amplified with primers targeting APP exons 16 and 17, and ~600 bp of the promoter region (covering 534G→A,
49C→T, 369C→G and 118C→A; all primer sequences available on request) and run on MegaBACE 1000 capillary electrophoresis system. Base calling was performed using Mutation Explorer (Softgenetics LLC, State College, PA).

3.5.2.2 Semi-Quantitative Multiplex PCR (sQM-PCR): Three FAM labeled primer sets for the target APP gene and one for the control gene PCBD2 (Chr. 5q31.1) were designed using Primer3 and a 16 bp rare nucleotide sequence was added 5’ to increase primer specificity. All probe optimization and experimental assay was performed as described previously (Rovelet-Lecrux, et al., 2006).

3.5.2.3 Fluorescent in situ hybridization (FISH): Bacterial artificial chromosome (BAC) clones containing both ends of APP gene (RP11-15D13 for the 5’-end and RP11-410J1 for the 3’-end) and CTB-63H24 mapping to 21q22.3 (control probe) were used for FISH. RP11-15D13 and RP11-410J1 were labeled with Cy3-dUTP and CTB-63H24 was labeled with FITC-dUTP by nick translation. FISH was performed following the protocol described in Mohapatra et al. 1997 (Mohapatra, et al., 1997).

3.5.2.4 SNP-Genotyping: GWAS SNPs were generated in a separate project on the Affymetrix’ Genome-Wide Human SNP Array 6.0, using individually optimized genotyping and allele-calling procedures. SNPs selected for this project were located within 25kb of the start-/stop-codon of APP, showed no deviation from
Hardy-Weinberg Equilibrium in unaffected individuals, and had minor allele frequencies of at least 5%. Overall, this yielded 62 SNPs spanning a chromosomal interval of ~400kb that could be used in the statistical analyses. The two promoter SNPs (rs459543 [+37c/g], rs463946 [-3102G/C]) were not included on the Affymetrix array, and were assayed via high efficiency fluorescence polarization-detected single base extension (HEFP-SBE) on a Criterion Analyst AD high-throughput fluorescence detection system (Molecular Devices), using customized PCR primers and cycling conditions (see ref. (Bertram et al., 2005) for details). Genotyping efficiency on the two SNPs tested here was >95%, while the error rate was <1% (based on ~10% duplicated samples).

3.5.2.5 CNV Analysis: This was done for individuals from the NIMH and NCRAD datasets for whom we used the Affymetrix' Genome-Wide Human SNP Array 6.0 as part of an ongoing GWAS. Raw probe intensities from each sample were normalized against HapMap CEU reference intensity data set. For the purpose of CNV analysis, we excluded samples showing chromosomal abnormalities and high CNV count. All included samples were subject to waviness factor adjustment (Diskin et al., 2008; K. Wang, et al., 2007). CNV calling and segmentation were performed using PennCNV (http://www.openbioinformatics.org/penncnv/) using default criteria.
3.5.2.6 Fluidigm Digital Array protocol: We used this method as validation experiment for the APP duplication observed in the NCRAD family. In brief, 16 ng of DNA from all subjects was mixed with 1X TaqMan gene expression master mix (Applied Biosystems, Foster City, CA), 1X FAM-labeled APP copy-number probe (Hs05532959_cn, Applied Biosystems, Foster City, CA), 1X VIC-labeled \textit{RNAseP} TaqMan assay and 1X sample loading reagent (Fluidigm Inc., South San Francisco, CA). DNA samples from individuals of NIMH family VI carrying an APP duplication were used as positive controls, and all samples were run on a 48.776 array. The experimental protocol and data analysis procedures are described in detail elsewhere (Qin, et al., 2008; Weaver, et al., 2010).

3.5.2.7 Statistical Analyses: To test for association between SNPs and disease risk and onset-age we used PBAT (v3.6) with an additive transmission model. All analyses were first restricted to families of self-reported “Caucasian” ancestry, and then repeated using families of all ancestries (with no change in results; data not shown). To combine statistical evidence across the association analyses from each independent dataset, we used Fisher’s combined probability test. Since the hypothesis of this study was to test for direction of effect as observed in the original reports (Athan, et al., 2002; Guyant-Marechal, et al., 2007), all \textit{P}-values used in this calculation are 1-tailed. \textit{P}-values were inversed (1-\textit{P}) for samples where over-transmission to affecteds was observed with the opposite allele as
compared to the original finding. Power calculations (performed in PBAT) suggested that we had good (i.e. 70% and above) power in the combined sample to detect the genetic effect sizes estimated in the original study (i.e. and OR of \(\sim 1.5 \) for rs459543 [+37c/g], and an OR of 0.5 for rs463946 [-3102G/C]) at \(p<0.05 \) and a disease prevalence of 10%. To correct for multiple comparisons we used a Bonferroni correction for 27 tests, which is the number of independent proxies (or "tag SNPs") within the investigated 400 kb interval when applying an \(r^2 \) threshold of 0.5.
TABLES
Table 3-1: Genetic association results of two APP promoter polymorphisms previously reported to be associated with AD risk.

<table>
<thead>
<tr>
<th>SNP</th>
<th>NIMH P-value</th>
<th>Fams</th>
<th>NIA P-value</th>
<th>Fams</th>
<th>NCRAD P-value</th>
<th>Fams</th>
<th>CAG P-value</th>
<th>Fams</th>
<th>COMBINED P-value</th>
<th>Fams</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs463946 [-3102G/C]</td>
<td></td>
</tr>
<tr>
<td>affection</td>
<td>0.80</td>
<td>21</td>
<td>0.25</td>
<td>20</td>
<td>0.28</td>
<td>19</td>
<td>0.65</td>
<td>1</td>
<td>0.96</td>
<td>40</td>
</tr>
<tr>
<td>age of onset</td>
<td>0.30</td>
<td>21</td>
<td>0.13</td>
<td>20</td>
<td>0.97*</td>
<td>19</td>
<td>0.71</td>
<td>1</td>
<td>0.96</td>
<td>40</td>
</tr>
<tr>
<td>rs459543 [+37c/g]</td>
<td></td>
</tr>
<tr>
<td>affection</td>
<td>0.92</td>
<td>19</td>
<td>0.22</td>
<td>18</td>
<td>0.74</td>
<td>15</td>
<td>0.91*</td>
<td>9</td>
<td>0.33</td>
<td>32</td>
</tr>
<tr>
<td>age of onset</td>
<td>0.17</td>
<td>19</td>
<td>0.23</td>
<td>18</td>
<td>0.40*</td>
<td>15</td>
<td>0.73*</td>
<td>9</td>
<td>0.54</td>
<td>32</td>
</tr>
</tbody>
</table>

All Analyses are restricted to Caucasian-only families. "Fams" = number of informative families. All P-values are one-sided, as described in the methods. Combined analyses based on Fisher's combined probability test of the results in each of the four individual samples.
Table 3-2: Summary of demographic and clinical characteristics of families linked to APP region on chromosome 21q.

<table>
<thead>
<tr>
<th>Family</th>
<th>P-value†</th>
<th>cM</th>
<th># Affecteds (onset ages)</th>
<th># Unaffecteds (ages)</th>
<th>AD diagnosis‡</th>
<th>APP mutation</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0.06</td>
<td>22</td>
<td>3 (60-66 years)</td>
<td>3 (66-80 years)</td>
<td>Definite</td>
<td>none</td>
</tr>
<tr>
<td>II</td>
<td>0.13</td>
<td>22</td>
<td>3 (52-67 years)</td>
<td>4 (66-86 years)</td>
<td>Definite</td>
<td>none</td>
</tr>
<tr>
<td>III</td>
<td>0.06</td>
<td>37</td>
<td>3 (60-73 years)</td>
<td>1 (67 years)</td>
<td>Probable</td>
<td>none</td>
</tr>
<tr>
<td>IV</td>
<td>0.03</td>
<td>22</td>
<td>4 (63-78 years)</td>
<td>none</td>
<td>Definite</td>
<td>none</td>
</tr>
<tr>
<td>V</td>
<td>0.015</td>
<td>34</td>
<td>4 (64-71 years)</td>
<td>3 (64-81 years)</td>
<td>Definite</td>
<td>none</td>
</tr>
<tr>
<td>VI</td>
<td>0.06</td>
<td>20</td>
<td>3 (43-50 years)</td>
<td>2 (60-78 years)</td>
<td>Definite</td>
<td>duplication</td>
</tr>
<tr>
<td>VII</td>
<td>0.015</td>
<td>22</td>
<td>4 (45-58 years)</td>
<td>3 (62-79 years)</td>
<td>Definite</td>
<td>Val717Leu</td>
</tr>
<tr>
<td>VIII</td>
<td>0.06</td>
<td>22</td>
<td>3 (56-71 years)</td>
<td>none</td>
<td>Probable</td>
<td>none</td>
</tr>
</tbody>
</table>

†Derived from multipoint analyses of data in ref.(Blacker, et al., 2003).
‡Best degree of diagnostic certainty in affecteds per family.
Table 3-3: Results of relative quantitation of APP copy number from Fluidigm Digital Array 48.776 data (Reference or house-keeping gene: RNAseP).

<table>
<thead>
<tr>
<th>Family ID</th>
<th>Subject ID</th>
<th>Affection</th>
<th>APOE-ε4</th>
<th>APP vs. RNAseP Quantitative ratio</th>
<th>APP Copy Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRB</td>
<td>ND01</td>
<td>EOAD</td>
<td>Heterozygous</td>
<td>1.558</td>
<td>3</td>
</tr>
<tr>
<td>BRB</td>
<td>ND02</td>
<td>Unaffected</td>
<td>Negative</td>
<td>1.023</td>
<td>2</td>
</tr>
<tr>
<td>BRB</td>
<td>ND03</td>
<td>EOAD</td>
<td>Negative</td>
<td>1.558</td>
<td>3</td>
</tr>
<tr>
<td>BRB</td>
<td>ND04</td>
<td>LOAD</td>
<td>Heterozygous</td>
<td>1.055</td>
<td>2</td>
</tr>
<tr>
<td>BRB</td>
<td>ND05</td>
<td>Unaffected</td>
<td>Negative</td>
<td>0.915</td>
<td>2</td>
</tr>
</tbody>
</table>
Figure 3-1: Pedigree charts of families found to carry disease-causing APP mutations and locus duplications.

Information for each individual is (from top to bottom): age at onset (in affected individuals), or age at last examination (unaffected individuals); APOE genotype; APP mutation finding ("dup" = carriers of APP duplication; "mut" = carriers of Val717Leu mutation). Probands are indicated by arrows. No DNA or clinical information was available from the founders ("?").
Figure 3-2: Delineation of APP duplicated region identified here vs. those of previous studies
Delineation of APP duplicated region identified here vs. those of previous studies; Approximate locations of the duplicated intervals across studies. Solid arrows indicate minimal size of the duplicated interval; dotted lines indicate maximal boundaries. Note that our study is the only to use high-density GWAS data, allowing a much more precise delineation of the duplicated interval than the lower-resolution microsatellite-based mapping. Physical location of duplicated segment from Affymetrix Genome-wide SNP 6.0 array mapped to hg18 assembly are Family VI - Chr21: 23984747-27466529 and Family BRB - Chr21: 26125668-26505191
Figure 3-3: FISH images of lymphoblast cells from all individuals in family VI carrying a duplication of the APP-locus.

Interphase FISH analysis of APP duplication. RP11-15D13 containing the 5’-end of the APP gene was labeled in Cy3-dUTP (red) and CTB-63H24 containing the telomere of chromosome 21 was labeled in FITC-dUTP (green). With the exception of #118 (VI-II.5) all subjects show evidence for an APP duplication. #116 (VI-II.4) represents the individual carrying three copies of APP but without clinical evidence for AD at last examination (see Figure. 3-1).
CHAPTER 4: RARE AUTOSOMAL COPY NUMBER VARIATIONS IN EARLY ONSET ALZHEIMER’S DISEASE

4.1 Abstract

Over 200 rare and highly penetrant pathogenic mutations in \(APP, PSEN1 \) and \(PSEN2 \) are identified in early-onset familial form of AD (EOFAD). Of these, 17 EOFAD families carrying duplication in \(APP \) locus, breakpoints unique to every family, remain the only copy number variations (CNVs) known to cause EOFAD. Using high-density DNA microarray data we performed a comprehensive genome-wide analysis for presence of rare CNVs in 261 early/mixed Alzheimer’s disease pedigrees. In addition to confirming two families previously known to carry copy number (CN) gain in \(APP \), our analyses revealed nine rare CNVs unique to the AD families that harbor them. These novel CNVs encompass genes related to various neuronal pathways, as well as, pathogenetic factors of other brain disorders, such as: \(CHMP2B, VLDLR, A2BP1, ERMP1 \) and \(EPHA6 \). To our knowledge, this is the first study reporting rare gene-rich CNVs in EOFAD, which are likely to further our understanding on AD pathogenesis.
4.2 Introduction

Alzheimer's disease (AD) is a genetically complex and heterogeneous disorder. Family history is the second biggest risk factor in AD following age; AD risk doubles with every decade of age (Hooli & Tanzi, 2009). Highly penetrant single base-pair mutations in APP, PSEN1 and PSEN2 are known to cause EOFAD (Cruts & Brouwers, 1998). While APOE is the only established major risk factor in late-onset sporadic form of AD (LOAD), where individuals carrying ε4 allele are at 4~10 fold higher risk of LOAD affliction (Bertram, Lill, & Tanzi, 2010). These genetic findings were crucial to understanding the underlying molecular neuropathology of AD but explain just about 50% of AD heritability. Currently there are no reports on identification of novel EOAD genes, while numerous studies have associated and replicated multiple genes that show modest effects in LOAD (Bertram, 2011) (10-15%, www.alzgene.org).

The majority of the reported AD genetic studies are based on the effects of sequence variants (mutations and single nucleotide polymorphisms, SNPs) on AD susceptibility with few exceptions (Brouwers, et al., 2006; Shaw, et al., 2011). However, recent studies estimate that structural variations (SVs) in the genome, including copy number variation (CNVs) (Feuk, et al., 2006) make significant contributions to genetic and phenotypic variation (Stranger, et al., 2007; Varki,
Geschwind, & Eichler, 2008). CNVs vary from a few kilobases (kb) to several megabases (mb), but in most instances arbitrarily refers to DNA segment >1 kb. Covering about 12% of the human genome CNVs overlay more nucleotide content per genome than the SNPs identified to date (Jakobsson et al., 2008; Redon, Ishikawa, Fitch, Feuk, Perry, Andrews, Fiegler, Shapero, Carson, Chen, Cho, Dallaire, Freeman, Gonzalez, Gratacos, Huang, Kalaitzopoulos, Komura, MacDonald, Marshall, Mei, Montgomery, Nishimura, Okamura, Shen, Somerville, Tchinda, Valsesia, Woodward, Yang, Zhang, Zerjal, Armengol, et al., 2006). The majority of the CNVs occur adjacent to repeating DNA sequences, such as, segmental duplications (SDs), low-copy repeats (LCRs), and interspersed repeat elements (Alu and LINE). The repeat elements influence generation of CNVs by two mechanisms (Gu, et al., 2008): nonallelic homologous recombination (NAHR) and nonhomologous end joining (NHEJ), occurring both during meiosis or mitosis (Maiti, et al., 2011). Recent studies also report several CNVs shown to underlie pathogenesis of complex diseases such as autism (Sebat, et al., 2007), schizophrenia (Bassett, Scherer, & Brzustowicz, 2010; Vacic et al., 2011), and HIV (Gonzalez et al., 2005; Townson, Barcellos, & Nibbs, 2002). Considering the modest success of recent genome-wide association studies (GWAS) (Manolio, et al., 2009) CNVs could hold immense potential to explaining missing heritability in human disorders, and in our case AD.
On the other hand, CNVs are highly complex; penetrance, frequency and functional implications are in the early stages of understanding (Girirajan & Eichler, 2010; C. Lee & Scherer, 2010). The influence of larger, rare and gene-rich CNVs on phenotype is thought to be clinically significant (C. Lee & Scherer, 2010), but the lack of in-depth understanding of CNVs complicates performing association studies (Ionita-Laza, Rogers, Lange, Raby, & Lee, 2009). Moreover, identification of large rare CNVs influence on diseases have proven to be more successful than association studies of copy number polymorphisms (CNPs, (Chartier-Harlin et al., 2004; Pagnamenta et al., 2011; Rovelet-Lecrux, et al., 2006). Based on the above facts, we set out to investigate rare CNVs not reported in DGV, that are large (limiting to CNVs >100 kb) and segregating with disease in our EOFAD pedigrees – emphasizing APP duplication (Hooli et al) as a model.
4.3 Results

DNA microarray data from 131 NIMH early/mixed pedigrees and 132 NCRAD families were analyzed for CNVs using PennCNV (2010May01 version) and Golden Helix SVS 7.4, applying the default calling criteria (Diskin, et al., 2008; GoldenHelix, 2011b; K. Wang, et al., 2007). The total number of CNVs, copy number (CN) gain, CN loss and CNV burden did not show any significant differences between affecteds vs. unaffecteds, in both NIMH and NCRAD datasets (Table 4-1). CNV segments that showed <= 70% overlap with CNPs reported on Database of Genomic Variants (hg18, build 36) were excluded from further analysis in order to enrich for rare CNVs. The 70% cutoff range to differentiate CNPs was chosen arbitrarily based on DGV (DGV, 2011; Iafrate, et al., 2004; J. Zhang, et al., 2006) and twin studies (Maiti, et al., 2011). Preliminary CNV analysis confirmed two EOAD families carrying APP locus duplication (Hooli et al, 2011). These APP locus duplication families were subsequently used as positive controls in Fluidigm and FISH CNV confirmational assays. Further analyses revealed twelve CNVs in NIMH dataset and seven CNVs in NCRAD dataset that showed segregation with AD (Table4-2). Finally, in addition to comparing with CNPs in DGV, the 19 CNVs identified were checked for presence in the CNV data from the entire collection of NIMH and NCRAD subjects (total of 2796 samples from 825 families). None of these CNVs were
detected in such large collections of AD families, indicating that these CNVs are rare, no-recurrent and unique to the pedigrees harboring them.

Twelve unique CNVs identified in NIMH pedigrees (four deletion CNVs and eight duplications) were confirmed using FISH and Fluidigm (Table 4-3 and Table 4-5); three out of four deletions were confirmed using these techniques, while all eight duplications were false positive calls. In NCRAD samples (Table 4-4), seven unique CNVs (three loss CNVs and four gains) were shortlisted for follow-up confirmation on Fluidigm. All but one deletion CNV were confirmed to be true. Affymetrix 6.0 call-rate and quality depends largely on hybridization specificity and signal intensity (Hao, Schadt, & Storey, 2008; McCarroll et al., 2008), and NIMH samples showed higher false-positive calls since the samples were processed in two different labs using different batches of chips. In total, five of the nine CNVs identified were heterozygous deletions. In these families, the average familial onset age was 60.5 years and average CNV size was 224 Kb. These CNVs encompassed the genes CHMP2B, POU1F1, KANK1, DMRT1, DMRT3, FLJ35024, VLDLR and A2BP1. The four gain CNVs showed average familial onset age of 58.75 years and average CNV size of 501Kb, and associated with the genes: CDH2, ERMP1, EVC, EVC2, CRMP1 and EPHA6. In six out of nine cases, the CNVs and APOE-ε4 alleles segregated with AD, suggesting the possibility of these genes acting as genetic modifiers. (Table 4-2, Figure 4-1)
4.4 Discussion

APP duplication remains the only established CNV in early-onset AD. Our comprehensive and systematic genome-wide analyses of CNVs in EOAD family samples yielded multiple rare and unique CNVs segregating with the disease, spanning close to a dozen genes (Table 4-2, Figure 4-1).

Family NH1: Two of the four affected individuals (Onset age: 61 and 72) showed a 331 KB deletion overlapping genes chromatin modifying protein 2B (*CHMP2B*) and POU class 1 homeobox 1 (*POU1F1*). Both the affected individuals are homozygous for *APOE*-ε4 allele, while the two unaffected siblings were heterozygous for *APOE*-ε4 allele with current age of 75 and 83. *CHMP2B* has been previously shown to harbor multiple, rare pathogenic mutations leading to Frontotemporal dementia (FTD, OMIM: 609512) and Amyotrophic lateral sclerosis (ALS, OMIM: 600795), possibly due to endosomal trafficking disruption (Urwin et al., 2010). *CHMP2B* is expressed in all neuronal populations and co-localizes with Granulovacuolar degeneration (GVD) - one of the pathological hallmarks in AD (Funk, Mrak, & Kuret, 2011; Yamazaki et al., 2010). The adjacent gene *POU1F1* (OMIM: 173110) is reported to cause pituitary hormone deficiency and is associated with mental retardation (Y. Sun et al., 2006; Turton et al., 2005), implying role of the deleted loci with susceptibility to neurodegenerative disorders.
Family NH2: The 400 KB deletion showed a partial overlap (59%) with a CNP, and spanning KN motif and ankyrin repeat domains 1 (KANK1) and doublesex and mab-3 related transcription factor genes (DMRT1 and DMRT3) in two affected subjects (Onset ages: 64 and 65, carrying APOE-ε3,4). The deletion CNV and APOE-ε4 do not segregate with the disease individually, but the combination of both APOE-ε4 and the CNV segregate in both affecteds. The last age at examination of subject-894 (Unaffected, APOE-ε4 negative, carrying deletion) was 85, subject-893 (Unaffected, APOE-ε4 negative, diploid CN in the locus) was 87, and subject-385 (unaffected, APOE-ε3,4, diploid CN in the locus) was 71. This CNV maps 9p24.3 locus, which is reported to cause Chromosome 9p deletion syndrome (Hayashi et al., 2011) (OMIM: 158170), suggesting involvement of the loci with neuronal functioning and disorders.

Family NH3: Affected subjects (AAO: 62 and 75, APOE-ε4 positive) in family NH3 carry a 151 KB deletion overlapping an uncharacterized gene FLJ35024, located 46 KB 5’ of Very low density lipoprotein receptor gene (VLDLR). FLJ65024 gene is not described in public databases, while VLDLR has been previously studied as a candidate gene in AD without any strongly positive outcome (www.alzgene.org). Studies suggest CNVs can alter expression levels of genes in close proximity (up to 2 mb away) (C. Lee & Scherer, 2010; Weterman, et al., 2010), and VLDLR dysregulation could hold clues to AD pathogenesis due its
role in MAPT phosphorylation (C. J. Carter, 2007), interaction with RELN (Forster et al., 2010) etc. Further, numerous pathogenic mutations in VLDLR have also been reported to cause cerebral ataxia and mental retardation (OMIM: 224050), indicating that VLDLR plays an important role in nervous system functioning, particularly pathways associated with cognition and dementia.

Family ND1: Both of the affected individuals in this family (Onset age: 56 and 68, APOE-ε4 negative, no unaffecteds) carry a 110 Kb deletion in an intergenic region of 16p13.2. The closest genes to the CNV are: ataxin 2-binding protein 1 (A2BP1) located 0.3 Mb telomeric and 4-aminobutyrate aminotransferase (ABAT) located 0.57 Mb centromeric to the CNV breakpoint. Both A2BP1 and ABAT are associated with various neuronal pathways and associated with neurodegenerative diseases, however the CNV does not reveal any obvious clues to functional implications leading to AD.

Family ND2: Two of the three affected subjects (onset age 64 and 65, APOE-ε4 positive) showed presence of a gain in the locus copy number, while the third affected (unknown current age and onset age, APOE-ε4 negative) is diploid. The 488 Kb gain in the genomic loci encompasses CDH2, a cadherin family gene expressed in brain, skeletal and cardiac muscles, and with a role in synaptic adhesion (OMIM: 114020). Studies indicate CDH2 plays an important role in
synaptic adhesion, dendritic morphology and neuritic growth (Aiga, Levinson, & Bamji, 2011; Lefort, Wojciechowski, & Hocking, 2011; Malinverno et al., 2010; Rieger, Senghaas, Walch, & Koster, 2009; Tan, Peng, Song, Zheng, & Yu, 2010), and could possibly affect AD directly via interaction with \(\gamma \)-secretase complex (Kopan & Ilagan, 2004).

Family ND3: Two affected individuals (Onset age: 37 and 63, APOE-\(\varepsilon \)4 positive, no unaffected subjects) show presence of a 550 Kb duplication segment. The CN gain segment overlaps and extends beyond CNPs reported in DGV and harbors multiple small segments of CNPs around the breakpoint indicating susceptibility of the locus to CN changes. The CNV is located in the intergenic region with LPHN3 (0.65 Mb centromeric), SRD5A2L2 (1.1 Mb telomeric) and EPHA5 (2.1 Mb telomeric) in close proximity, and fails to reveal any direct clues to pathogenic effects.

Family ND4: Two affected subjects showing onset age of 40 and 42 years (APOE-\(\varepsilon \)4 negative, no unaffecteds) show presence of a 124 Kb deletion overlapping ERMP1 and CIP150 (KIAA1432). CIP150 and ERMP1 are not characterized to great extent but a recent study of proteome alterations in transgenic AD mouse model showed decrease in ERMP1 expression (Martin et al., 2008), while slightly
higher expression is reported in epilepsy mouse models (Bergren, Rutter, & Kearney, 2009).

Family ND5: Both affected individuals (Onset age: 52 and 56, *APOE-ε4* negative) carry 240 Kb gain, overlapping *EVC, EVC2* and *CRMP1*. This loci is implicated in Ellis-Van Creveld syndrome (OMIM: 225500) and Weyers acrofacial dysostosis (OMIM: 193530) – caused by different mutations in *EVC* and *EVC2*. On the other hand, *CRMP1*, highly expressed in the brain (Schmidt & Strittmatter, 2007), interacts with *SEMA3A* and shown to have an important role in neural growth and axonal guidance (Fukada et al., 2000; Kurnellas et al., 2010; Mukherjee et al., 2009; Yamashita et al., 2006), and seems like a promising candidate gene for investigation of pathogenic effects leading to AD.

Family ND6: Two affected *APOE-ε4* positive subjects in family ND6 (onset age: 64 and 69) carry a 0.73 Mb intergenic gain CN. *EPHA6*, located 0.33 Mb telomeric is the only gene in close proximity. *EPHA6* is highly expressed in the brain and play an important role in forming neuronal networks (Orioli & Klein, 1997). Several GWAS report association of the loci with a variety of phenotypes, including: longevity (Sebastiani et al., 2010), risperidone response in schizophrenic subjects (Ikeda et al., 2010), obesity (Glessner et al., 2010) and male infertility (Aston & Carrell, 2009). However, contradicting the CN gain seen in
the affecteds, learning and memory impairment has been observed in EPHA6 knock-out mice (Savelieva et al., 2008).

In summary, the CNVs identified in our study are consistent with reports suggesting occurrence of CNVs in higher frequency in region harboring genes associated with brain functions (Cooper, et al., 2007; Henrichsen, et al., 2009; J. A. Lee & Lupski, 2006). Similar to many of the CNV studies in the recent publications (Conrad, et al., 2010; C. Lee & Scherer, 2010), the strongly suggestive functional role of genes underlying these rare CNVs justify further in-depth functional studies to unravel their roles in AD pathogenesis. However, owing to the limited understanding of the complexities of functional implication of CNVs in the genome, elucidating the role of these rare CNVs and underlying genes will require creative solutions in unraveling their role in the disease onset. In addition, further CNV analysis in larger cohorts (Cook & Scherer, 2008; Stankiewicz & Lupski, 2010; Vassos et al., 2010) could identify the minimal pathogenic segment and further our their role in modifying susceptibility to AD. Lastly, GWAS using CNPs could reveal loci that also carry highly penetrant and rare CNVs that cause EOFAD.
4.5 Methods

4.5.1 Family sample-sets: Two large family-based AD sample-sets were used in the study. The National Cell Repository for Alzheimer's Disease (NCRAD) samples consist of 1108 samples from 331 pedigrees, including 132 early-mixed families (age of onset<65) with 498 individuals. The National Institute of Mental Health Alzheimer's Disease Genetics Initiative Study (NIMH) dataset consists 1439 individuals from 436 families, including 131 early-mixed families and 510 subjects. Both the families are described in detail elsewhere (Bertram, Schjeide, et al., 2008).

4.5.2 Genotyping: DNA samples obtained from the respective repositories were processed on Affymetrix Human Genome Wide SNP Array 6.0 panel using standard protocol. CNVs were inferred from probe intensity data using two different algorithms: Hidden Markov Model (HMM) using PennCNV (K. Wang, et al., 2007), as well as, Copy Number Analysis Module (univariate segmentation mode) using Golden Helix SNP & Variation Suite (SVS 7.4) (GoldenHelix, 2011b). Samples that failed to pass quality criteria (GoldenHelix, 2011a), such as gender validation, cQC, and MAPD were excluded from the study. CNV segments larger than 100 Kb in size, showing less than <70% overlap with CNPs reported in Database of genomic variants (DGV) were visually analyzed for segregation with affection status in all the 261 pedigrees.
4.5.3 Confirmation of CNVs: CNVs were confirmed using Fluidigm Digital 48.776 array and TaqMan copy number probes (Qin, et al., 2008; Weaver, et al., 2010). Depending on the availability and relevance to AD, several CNVs were further confirmed using fluorescence in-situ hybridization (FISH) as described previously (Mohapatra, et al., 1997) using lymphoblast cells derived from the subjects.
Tables 4-1: Overview of CNVs identified in two collections of Alzheimer’s disease family cohorts.

<table>
<thead>
<tr>
<th>Sample-set</th>
<th>Families</th>
<th>Subjects</th>
<th>Total (AAO*)</th>
<th>APOE-ε4 Positive</th>
<th>CNVs Detected (CNV burden)</th>
<th>Avg. Size (bp)</th>
<th>No of CN Loss (burden)</th>
<th>No of CN Gain (burden)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCRAD</td>
<td>130</td>
<td>498</td>
<td>332 (63.31)</td>
<td>250</td>
<td>4581 (13.8)</td>
<td>351,343</td>
<td>2503 (7.54)</td>
<td>2078 (6.26)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>161 (63.83)</td>
<td>91</td>
<td>2093 (13)</td>
<td>251,427</td>
<td>1041 (6.47)</td>
<td>1052 (6.53)</td>
</tr>
<tr>
<td>NIMH</td>
<td>131</td>
<td>511</td>
<td>317 (64.51)</td>
<td>236</td>
<td>5284 (16.7)</td>
<td>241,910</td>
<td>2446 (7.72)</td>
<td>2837 (8.95)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>194 (70.3)</td>
<td>100</td>
<td>3403 (17.54)</td>
<td>240,417</td>
<td>1706 (8.8)</td>
<td>1697 (8.75)</td>
</tr>
</tbody>
</table>

The table provides an overall summary of CNVs identified using HMM and CNAM copy-number inferring algorithms from microarray probe intensity data. The CNVs listed above are not confirmed using additional CNV platforms and are similar to previous reports (Ku et al., 2010; Pang et al., 2010). AAO=average onset age, burden=CNVs per individual.
Table 4-2: List of rare CNVs identified in NIMH and NCRAD pedigree sets.

<table>
<thead>
<tr>
<th>CNV ID</th>
<th>Gene(s) in the loci</th>
<th>Subject IDs</th>
<th>Diagnosis</th>
<th>APOE</th>
<th>Onset Age</th>
<th>Array CN</th>
<th>CN State</th>
<th>CNV Region (hg18)</th>
<th>Size (KB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FADCNV1</td>
<td>ERMP1</td>
<td>Fam. 62493-ND1</td>
<td>05AD7725</td>
<td>Affected</td>
<td>0</td>
<td>40</td>
<td>1</td>
<td>Loss</td>
<td>Chr9: 5744105-5867748</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>93M0806</td>
<td>Affected</td>
<td>0</td>
<td>42</td>
<td>1</td>
<td>Loss</td>
<td>Chr9: 5744105-5867748</td>
</tr>
<tr>
<td>FADCNV2</td>
<td>EVC2, EVC, CRMP1</td>
<td>Fam. 62613-ND2</td>
<td>95M2194</td>
<td>Affected</td>
<td>0</td>
<td>52</td>
<td>3</td>
<td>Gain</td>
<td>Chr4: 5602184-5837823</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>01AD4175</td>
<td>Affected</td>
<td>0</td>
<td>56</td>
<td>3</td>
<td>Gain</td>
<td>Chr4: 5602184-5845805</td>
</tr>
<tr>
<td>FADCNV3</td>
<td>A2BP1, ABAT</td>
<td>Fam. 62080-ND3</td>
<td>90M0526</td>
<td>Affected</td>
<td>0</td>
<td>56</td>
<td>1</td>
<td>Loss</td>
<td>Chr16: 7991014-8100555</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>90M0525</td>
<td>Affected</td>
<td>0</td>
<td>68</td>
<td>1</td>
<td>Loss</td>
<td>Chr16: 7994156-8100555</td>
</tr>
<tr>
<td>FADCNV4</td>
<td>CNP overlap</td>
<td>Fam. 62329-ND4</td>
<td>92M0524</td>
<td>Affected</td>
<td>1</td>
<td>37</td>
<td>3</td>
<td>Gain</td>
<td>Chr4: 63268479-63813833</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>92M0570</td>
<td>Affected</td>
<td>1</td>
<td>63</td>
<td>3</td>
<td>Gain</td>
<td>Chr4: 63268479-63809059</td>
</tr>
<tr>
<td>FADCNV5</td>
<td>CDH2</td>
<td>Fam. 62135-ND5</td>
<td>93M0784</td>
<td>Affected</td>
<td>1</td>
<td>64</td>
<td>3</td>
<td>Gain</td>
<td>Chr18: 23693824-24181680</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>93M0872</td>
<td>Affected</td>
<td>1</td>
<td>65</td>
<td>3</td>
<td>Gain</td>
<td>Chr18: 23693824-24180173</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>93M0973</td>
<td>Affected</td>
<td>0</td>
<td>--</td>
<td>2</td>
<td>Diploid</td>
<td>--</td>
</tr>
<tr>
<td>FADCNV6</td>
<td>EPHA6</td>
<td>Fam. 62863-ND6</td>
<td>04AD7150</td>
<td>Affected</td>
<td>1</td>
<td>64</td>
<td>3</td>
<td>Gain</td>
<td>Chr3: 96949558-97684405</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>04AD6981</td>
<td>Affected</td>
<td>1</td>
<td>69</td>
<td>3</td>
<td>Gain</td>
<td>Chr3: 96937158-97678067</td>
</tr>
<tr>
<td>CNV ID</td>
<td>Gene(s) in the loci</td>
<td>Subject IDs</td>
<td>Diagnosis</td>
<td>APOE</td>
<td>Onset Age</td>
<td>Array CN</td>
<td>CN State</td>
<td>CNV Region (hg18)</td>
<td>Size (KB)</td>
</tr>
<tr>
<td>--------</td>
<td>---------------------</td>
<td>-------------</td>
<td>-----------</td>
<td>------</td>
<td>-----------</td>
<td>----------</td>
<td>----------</td>
<td>-------------------</td>
<td>----------</td>
</tr>
<tr>
<td>FADCNV7</td>
<td>KANK1, DMRT1</td>
<td>90C00132</td>
<td>AC</td>
<td>3,4</td>
<td>64</td>
<td>1</td>
<td>Loss</td>
<td>Chr9: 587476-992280</td>
<td>405</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90C00385</td>
<td>ND</td>
<td>3,4</td>
<td>--</td>
<td>2</td>
<td>Diploid</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90C00386</td>
<td>PR</td>
<td>3,4</td>
<td>65</td>
<td>1</td>
<td>Loss</td>
<td>Chr9: 666266-992280</td>
<td>326</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90C00893</td>
<td>ND</td>
<td>3,3</td>
<td>--</td>
<td>2</td>
<td>Diploid</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90C00894</td>
<td>ND</td>
<td>3,3</td>
<td>--</td>
<td>1</td>
<td>Loss</td>
<td>Chr9: 589612-992280</td>
<td>403</td>
</tr>
<tr>
<td>FADCNV8</td>
<td>CHMP2B, POU1F1</td>
<td>90C00006</td>
<td>AC</td>
<td>4,4</td>
<td>61</td>
<td>1</td>
<td>Loss</td>
<td>Chr3: 87319231-87650334</td>
<td>331</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90C00045</td>
<td>PR</td>
<td>4,4</td>
<td>72</td>
<td>1</td>
<td>Loss</td>
<td>Chr3: 87319617-87650334</td>
<td>331</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90C00070</td>
<td>ND</td>
<td>3,4</td>
<td>--</td>
<td>2</td>
<td>Diploid</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90C00090</td>
<td>ND</td>
<td>3,4</td>
<td>--</td>
<td>2</td>
<td>Diploid</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>FADCNV9</td>
<td>FLJ35024, VLDLR</td>
<td>90C04456</td>
<td>PR</td>
<td>4,4</td>
<td>62</td>
<td>1</td>
<td>Loss</td>
<td>Chr9: 2414322-2565408</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90C04457</td>
<td>AC</td>
<td>3,4</td>
<td>75</td>
<td>1</td>
<td>Loss</td>
<td>Chr9: 2414322-2565408</td>
<td>151</td>
</tr>
</tbody>
</table>
Table 4-2: (Continued)

<table>
<thead>
<tr>
<th>CNV ID</th>
<th>Gene(s) in the loci</th>
<th>Subject IDs</th>
<th>Diagnosis</th>
<th>APOE</th>
<th>Onset Age</th>
<th>Array CN</th>
<th>CN State</th>
<th>CNV Region (hg18)</th>
<th>Size (KB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ND-APPCNV*</td>
<td>APP</td>
<td>Fau. 62309-ND7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91M0636</td>
<td>Affected</td>
<td>1</td>
<td>49</td>
<td>3</td>
<td>Gain</td>
<td>Chr21: 26125668-26505191</td>
<td>380</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91M0667</td>
<td>Affected</td>
<td>0</td>
<td>52</td>
<td>3</td>
<td>Gain</td>
<td>Chr21: 26125668-26523359</td>
<td>398</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95M2903</td>
<td>Affected</td>
<td>1</td>
<td>70</td>
<td>2</td>
<td>Diploid</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95M2798</td>
<td>Unaffected</td>
<td>0</td>
<td>69</td>
<td>2</td>
<td>Diploid</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95M2844</td>
<td>Unaffected</td>
<td>0</td>
<td>74</td>
<td>2</td>
<td>Diploid</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NH-APPCNV*	APP	FAM. 52149-NH4							
90C00670	AC	3,3	43	3	Gain	Chr21: 23984747-27466529	3482		
90C00738	AC	3,3	48	3	Gain	Chr21: 23987177-27466529	3479		
90C00749	ND	3,3	--	3	Gain	Chr21: 23987177-27466008	3479		
90C00750	AC	3,3	50	3	Gain	Chr21: 23993039-27458052	3465		
90C00751	ND	3,3	--	2	Diploid	--	--		

*Previously reported APP duplication families, VI and BRB respectively (Hooli et al). AC=Autopsy confirmed, PR=Probable AD, ND=No dementia

Table 4-2: The table lists all the families showing presence of CNVs that segregated with AD, including two previously reported APP duplication families*. Physical location corresponds to hg18 version of the genomic assembly and the genes listed are either encompassed by the CNVs or lie in the 1MB proximal genomic region.
Table 4-3: Detailed results from Fluidigm and FISH confirmation of CNVs identified in the NIMH pedigree dataset.

<table>
<thead>
<tr>
<th>FamID</th>
<th>IndID</th>
<th>Phen.</th>
<th>APOE</th>
<th>Target Gene</th>
<th>Rx. Count</th>
<th>Control Gene</th>
<th>Rx. Count</th>
<th>Rx. Union</th>
<th>Rx. Inters.</th>
<th>Gene Quant.</th>
<th>Fluidigm CN</th>
<th>Chip CN</th>
<th>Fluidigm Results</th>
<th>FISH Probes</th>
<th>FISH Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>50152</td>
<td></td>
<td></td>
<td></td>
<td>POU1F1</td>
<td>332</td>
<td>RNAseP</td>
<td>579</td>
<td>648</td>
<td>263</td>
<td>0.405</td>
<td>1</td>
<td>Loss</td>
<td>RP11-47F13/RP11-71J24</td>
<td>Del.</td>
<td></td>
</tr>
<tr>
<td>90C00006</td>
<td>1</td>
<td>4,4</td>
<td></td>
<td></td>
<td>223</td>
<td></td>
<td>421</td>
<td>514</td>
<td>130</td>
<td>0.431</td>
<td>1</td>
<td>Loss</td>
<td>RP11-17D23/RP11-71J24</td>
<td>Del.</td>
<td></td>
</tr>
<tr>
<td>90C00070</td>
<td>9</td>
<td>3,4</td>
<td></td>
<td></td>
<td>617</td>
<td></td>
<td>655</td>
<td>743</td>
<td>529</td>
<td>0.849</td>
<td>2</td>
<td>Normal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90C00900</td>
<td>9</td>
<td>3,4</td>
<td></td>
<td></td>
<td>586</td>
<td></td>
<td>626</td>
<td>716</td>
<td>496</td>
<td>0.854</td>
<td>2</td>
<td>Normal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90C00385</td>
<td>9</td>
<td>3,4</td>
<td></td>
<td></td>
<td>478</td>
<td></td>
<td>642</td>
<td>710</td>
<td>378</td>
<td>0.988</td>
<td>2</td>
<td>Normal</td>
<td>RP11-143M15/RP11-295G24</td>
<td>Del.</td>
<td></td>
</tr>
<tr>
<td>90C00386</td>
<td>2</td>
<td>3,4</td>
<td></td>
<td></td>
<td>486</td>
<td></td>
<td>668</td>
<td>729</td>
<td>425</td>
<td>0.493</td>
<td>1</td>
<td>Loss</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90C00893</td>
<td>9</td>
<td>3,3</td>
<td></td>
<td></td>
<td>726</td>
<td></td>
<td>746</td>
<td>770</td>
<td>702</td>
<td>0.823</td>
<td>2</td>
<td>Normal</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4-3: (Continued)

<table>
<thead>
<tr>
<th>FamID</th>
<th>IndID</th>
<th>Phen.</th>
<th>APOE</th>
<th>Target Gene</th>
<th>Rx. Count</th>
<th>Control Gene</th>
<th>Rx. Count</th>
<th>Rx. Union</th>
<th>Rx. Inters.</th>
<th>Gene Quant.</th>
<th>Fluidigm Chip CN</th>
<th>FISH Results</th>
<th>FISH Probes</th>
<th>Fluidigm CN</th>
<th>Chip CN</th>
<th>FISH Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>50368</td>
<td>50368</td>
<td></td>
<td></td>
<td>CCNK</td>
<td>439</td>
<td>RNAseP</td>
<td>450</td>
<td>621</td>
<td>268</td>
<td>0.962</td>
<td>Diploid</td>
<td>False +ve</td>
<td>RP11-362L22/</td>
<td>3</td>
<td>Gain</td>
<td></td>
</tr>
<tr>
<td></td>
<td>90C00627</td>
<td>2,4</td>
<td></td>
<td>RP11-436G5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>90C00782</td>
<td>3,4</td>
<td></td>
<td></td>
<td>373</td>
<td></td>
<td>370</td>
<td>557</td>
<td>186</td>
<td>1.012</td>
<td>Diploid</td>
<td>False +ve</td>
<td>RP11-420B22/</td>
<td>3</td>
<td>Gain</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50722</td>
<td></td>
<td></td>
<td>PSD3</td>
<td>401</td>
<td>RNAseP</td>
<td>332</td>
<td>541</td>
<td>192</td>
<td>1.403</td>
<td>Diploid</td>
<td>False +ve</td>
<td>RP11-420B22/</td>
<td>3</td>
<td>Gain</td>
<td></td>
</tr>
<tr>
<td></td>
<td>90C03580</td>
<td>2,4</td>
<td></td>
<td>RP11-532M24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>90C03581</td>
<td>2,4</td>
<td></td>
<td></td>
<td>639</td>
<td></td>
<td>581</td>
<td>722</td>
<td>498</td>
<td>1.461</td>
<td>Diploid</td>
<td>False +ve</td>
<td>RP11-482L11/</td>
<td>3</td>
<td>Gain</td>
<td></td>
</tr>
<tr>
<td></td>
<td>90C03584</td>
<td>3,3</td>
<td></td>
<td></td>
<td>440</td>
<td></td>
<td>382</td>
<td>594</td>
<td>228</td>
<td>1.437</td>
<td>Diploid</td>
<td>False +ve</td>
<td>RP11-482L11/</td>
<td>3</td>
<td>Gain</td>
<td></td>
</tr>
<tr>
<td></td>
<td>90C04101</td>
<td>9,4</td>
<td></td>
<td></td>
<td>336</td>
<td></td>
<td>381</td>
<td>542</td>
<td>177</td>
<td>0.846</td>
<td>Diploid</td>
<td>False +ve</td>
<td>RP11-482L11/</td>
<td>2</td>
<td>Normal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50985</td>
<td></td>
<td></td>
<td>DLG2</td>
<td>227</td>
<td>RNAseP</td>
<td>275</td>
<td>410</td>
<td>92</td>
<td>0.791</td>
<td>Diploid</td>
<td>False +ve</td>
<td>RP11-484D2</td>
<td>3</td>
<td>Gain</td>
<td></td>
</tr>
<tr>
<td></td>
<td>90C03892</td>
<td>2,4</td>
<td></td>
<td>RP11-362L22/</td>
<td>3</td>
<td>Gain</td>
<td></td>
</tr>
<tr>
<td></td>
<td>90C04087</td>
<td>2,4</td>
<td></td>
<td></td>
<td>336</td>
<td></td>
<td>314</td>
<td>489</td>
<td>161</td>
<td>1.094</td>
<td>Diploid</td>
<td>False +ve</td>
<td>RP11-436G5</td>
<td>3</td>
<td>Gain</td>
<td></td>
</tr>
</tbody>
</table>
Table 4-3: (Continued)

<table>
<thead>
<tr>
<th>FamID</th>
<th>IndID</th>
<th>Phen.</th>
<th>APOE</th>
<th>Target Gene</th>
<th>Rx. Count</th>
<th>Control Gene</th>
<th>Rx. Count</th>
<th>Rx. Union</th>
<th>Rx. Inters.</th>
<th>Gene Quant.</th>
<th>Fluidigm CN</th>
<th>Chip CN</th>
<th>Fluidigm Results</th>
<th>FISH Probes</th>
<th>FISH Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>50996</td>
<td>50996</td>
<td></td>
<td></td>
<td>TRHDE</td>
<td>258</td>
<td>RNaseP</td>
<td>327</td>
<td>451</td>
<td>134</td>
<td>0.937</td>
<td>1</td>
<td>Loss</td>
<td>False +ve</td>
<td>RP11-454P3/</td>
<td>Diploid.</td>
</tr>
<tr>
<td></td>
<td>90C04551</td>
<td>2,4</td>
<td></td>
<td>TRHDE</td>
<td>258</td>
<td>RNaseP</td>
<td>327</td>
<td>451</td>
<td>134</td>
<td>0.937</td>
<td>1</td>
<td>Loss</td>
<td>False +ve</td>
<td>RP11-454P3/</td>
<td>Diploid.</td>
</tr>
<tr>
<td></td>
<td>90C04584</td>
<td>2,4</td>
<td></td>
<td>TRHDE</td>
<td>376</td>
<td>RNaseP</td>
<td>426</td>
<td>578</td>
<td>224</td>
<td>0.931</td>
<td>1</td>
<td>Loss</td>
<td>False +ve</td>
<td>RP11-454P3/</td>
<td>Diploid.</td>
</tr>
<tr>
<td>51146</td>
<td>51146</td>
<td></td>
<td></td>
<td>DGV_59146</td>
<td>491</td>
<td>RNaseP</td>
<td>528</td>
<td>668</td>
<td>351</td>
<td>0.878</td>
<td>3</td>
<td>Gain</td>
<td>False +ve</td>
<td>RP11-454P3/</td>
<td>Diploid.</td>
</tr>
<tr>
<td></td>
<td>90C01018</td>
<td>2,4</td>
<td></td>
<td>DGV_59146</td>
<td>491</td>
<td>RNaseP</td>
<td>528</td>
<td>668</td>
<td>351</td>
<td>0.878</td>
<td>3</td>
<td>Gain</td>
<td>False +ve</td>
<td>RP11-454P3/</td>
<td>Diploid.</td>
</tr>
<tr>
<td></td>
<td>90C04663</td>
<td>2,4</td>
<td></td>
<td>DGV_59146</td>
<td>376</td>
<td>RNaseP</td>
<td>426</td>
<td>578</td>
<td>224</td>
<td>0.931</td>
<td>1</td>
<td>Loss</td>
<td>False +ve</td>
<td>RP11-454P3/</td>
<td>Diploid.</td>
</tr>
<tr>
<td></td>
<td>90C04666</td>
<td>2,4</td>
<td></td>
<td>DGV_59146</td>
<td>376</td>
<td>RNaseP</td>
<td>426</td>
<td>578</td>
<td>224</td>
<td>0.931</td>
<td>1</td>
<td>Loss</td>
<td>False +ve</td>
<td>RP11-454P3/</td>
<td>Diploid.</td>
</tr>
<tr>
<td></td>
<td>90C02341</td>
<td>2,3</td>
<td></td>
<td>DGV_36559</td>
<td>706</td>
<td>RNaseP</td>
<td>691</td>
<td>756</td>
<td>641</td>
<td>1.093</td>
<td>3</td>
<td>Gain</td>
<td>False +ve</td>
<td>RP11-454P3/</td>
<td>Diploid.</td>
</tr>
<tr>
<td></td>
<td>90C02342</td>
<td>2,3</td>
<td></td>
<td>DGV_36559</td>
<td>706</td>
<td>RNaseP</td>
<td>691</td>
<td>756</td>
<td>641</td>
<td>1.093</td>
<td>3</td>
<td>Gain</td>
<td>False +ve</td>
<td>RP11-454P3/</td>
<td>Diploid.</td>
</tr>
<tr>
<td></td>
<td>90C02343</td>
<td>2,3</td>
<td></td>
<td>DGV_36559</td>
<td>706</td>
<td>RNaseP</td>
<td>691</td>
<td>756</td>
<td>641</td>
<td>1.093</td>
<td>3</td>
<td>Gain</td>
<td>False +ve</td>
<td>RP11-454P3/</td>
<td>Diploid.</td>
</tr>
<tr>
<td></td>
<td>90C02344</td>
<td>2,3</td>
<td></td>
<td>DGV_36559</td>
<td>706</td>
<td>RNaseP</td>
<td>691</td>
<td>756</td>
<td>641</td>
<td>1.093</td>
<td>3</td>
<td>Gain</td>
<td>False +ve</td>
<td>RP11-454P3/</td>
<td>Diploid.</td>
</tr>
<tr>
<td></td>
<td>90C02345</td>
<td>2,3</td>
<td></td>
<td>DGV_36559</td>
<td>706</td>
<td>RNaseP</td>
<td>691</td>
<td>756</td>
<td>641</td>
<td>1.093</td>
<td>3</td>
<td>Gain</td>
<td>False +ve</td>
<td>RP11-454P3/</td>
<td>Diploid.</td>
</tr>
<tr>
<td></td>
<td>90C02346</td>
<td>2,3</td>
<td></td>
<td>DGV_36559</td>
<td>706</td>
<td>RNaseP</td>
<td>691</td>
<td>756</td>
<td>641</td>
<td>1.093</td>
<td>3</td>
<td>Gain</td>
<td>False +ve</td>
<td>RP11-454P3/</td>
<td>Diploid.</td>
</tr>
</tbody>
</table>
Table 4-3: (Continued)

<table>
<thead>
<tr>
<th>FamID</th>
<th>IndID</th>
<th>Phen.</th>
<th>APOE</th>
<th>Target Gene</th>
<th>Rx. Count</th>
<th>Control Gene</th>
<th>Rx. Count</th>
<th>Rx. Union</th>
<th>Rx. Inters.</th>
<th>Gene Quant.</th>
<th>Fluidigm CN</th>
<th>Chip CN</th>
<th>Fluidigm Results</th>
<th>FISH Probes</th>
<th>FISH Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>51223</td>
<td>90C02497</td>
<td>9,3,4</td>
<td>374</td>
<td>ANKRD17</td>
<td>386</td>
<td>567</td>
<td>193</td>
<td></td>
<td>0.957</td>
<td>2</td>
<td>Normal</td>
<td>False+ve</td>
<td>RP11-433K16/ RP11-326O23</td>
<td>Diploid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>90C02483</td>
<td>2,4,4</td>
<td>378</td>
<td>RNAseP</td>
<td>387</td>
<td>555</td>
<td>210</td>
<td></td>
<td>0.967</td>
<td>3</td>
<td>Gain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>90C02561</td>
<td>7,4,4</td>
<td>336</td>
<td>RNAseP</td>
<td>352</td>
<td>518</td>
<td>170</td>
<td></td>
<td>0.938</td>
<td>3</td>
<td>Gain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>90C02526</td>
<td>2,4,4</td>
<td>396</td>
<td></td>
<td>420</td>
<td>574</td>
<td>242</td>
<td></td>
<td>0.916</td>
<td>3</td>
<td>Gain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51278</td>
<td>90C04456</td>
<td>2,4,4</td>
<td>353</td>
<td>FLJ35024</td>
<td>565</td>
<td>650</td>
<td>268</td>
<td></td>
<td>0.464</td>
<td>1</td>
<td>Loss</td>
<td>Het.del.</td>
<td>RP11-91N2/ RP11-295G24</td>
<td>Del.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>90C04457</td>
<td>1,3,4</td>
<td>308</td>
<td>RNAseP</td>
<td>522</td>
<td>610</td>
<td>220</td>
<td></td>
<td>0.451</td>
<td>1</td>
<td>Loss</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4-3: (Continued)

<table>
<thead>
<tr>
<th>FamID</th>
<th>IndID</th>
<th>Phen.</th>
<th>APOE</th>
<th>Target Gene</th>
<th>Rx. Count</th>
<th>Control Gene</th>
<th>Rx. Count</th>
<th>Rx. Union</th>
<th>Rx. Inters.</th>
<th>Gene Quant.</th>
<th>Fluidigm CN</th>
<th>Chip CN</th>
<th>Fluidigm Results</th>
<th>FISH Probes</th>
<th>FISH Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>52106</td>
<td></td>
<td></td>
<td></td>
<td>USP34</td>
<td>575</td>
<td>RNAseP</td>
<td>594</td>
<td>721</td>
<td>448</td>
<td>0.931</td>
<td>3</td>
<td></td>
<td>False +ve</td>
<td>RP11-17D23/</td>
<td>Diploid</td>
</tr>
<tr>
<td></td>
<td>90C00092</td>
<td>2</td>
<td>3,4</td>
<td></td>
<td>90C00093</td>
<td>2</td>
<td>3,3</td>
<td>377</td>
<td>402</td>
<td>592</td>
<td>187</td>
<td>0.91</td>
<td>3</td>
<td></td>
<td>Gain</td>
</tr>
<tr>
<td></td>
<td>90C00254</td>
<td>2</td>
<td>3,4</td>
<td></td>
<td>90C00694</td>
<td>9</td>
<td>3,3</td>
<td>501</td>
<td>542</td>
<td>689</td>
<td>354</td>
<td>0.865</td>
<td>2</td>
<td>Normal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>90C00695</td>
<td>9</td>
<td>3,3</td>
<td></td>
<td>90C03480</td>
<td>2</td>
<td>3,4</td>
<td>626</td>
<td>647</td>
<td>741</td>
<td>532</td>
<td>0.914</td>
<td>3</td>
<td></td>
<td>Gain</td>
</tr>
<tr>
<td>52256</td>
<td></td>
<td></td>
<td></td>
<td>KIAA0922</td>
<td>303</td>
<td>RNAseP</td>
<td>325</td>
<td>498</td>
<td>130</td>
<td>0.91</td>
<td>3</td>
<td></td>
<td>False +ve</td>
<td>RP11-285C1/</td>
<td>Diploid</td>
</tr>
<tr>
<td></td>
<td>90C04140</td>
<td>2</td>
<td>4,4</td>
<td></td>
<td>90C04141</td>
<td>2</td>
<td>4,4</td>
<td>238</td>
<td>260</td>
<td>411</td>
<td>87</td>
<td>0.899</td>
<td>3</td>
<td></td>
<td>Gain</td>
</tr>
<tr>
<td>52149</td>
<td></td>
<td></td>
<td></td>
<td>APP</td>
<td>478</td>
<td>RNAseP</td>
<td>382</td>
<td>617</td>
<td>243</td>
<td>1.415</td>
<td>3</td>
<td></td>
<td>Control</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>90C00749</td>
<td>9</td>
<td>3,3</td>
<td></td>
<td>90C00751</td>
<td>9</td>
<td>3,3</td>
<td>406</td>
<td>431</td>
<td>601</td>
<td>236</td>
<td>0.913</td>
<td>2</td>
<td>Normal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>90C00670</td>
<td>1</td>
<td>3,3</td>
<td></td>
<td>90C00670</td>
<td>1</td>
<td>3,3</td>
<td>582</td>
<td>491</td>
<td>698</td>
<td>375</td>
<td>1.388</td>
<td>3</td>
<td></td>
<td>Gain</td>
</tr>
</tbody>
</table>
Table 4-3: The table shows the results from gene quantitation experiments performed using TaqMan probes and Fluidigm 770 digital array. The digital array runs nano-scale qPCR reactions, and hence runs up-to 770 replicates of every reaction. DNA sample from each test subject were run in multiplex using a Fam labeled target gene and a Vic labeled house-keeping gene. ‘Rx. Count’ column shows the number of replicate reactions and the ‘Rx. Inters.’ column is the number of reactions where both target and house-keeping (RNaseP and/or TERT) signal were detected. The ‘Gene Quan.’ column shows the ratio of target gene quantified against the diploid control gene. Ratios in the range of ~0.5 indicate a heterozygous deletion, ~1.0 indicates diploid and any ratio >1.5 indicate increase in gene copy number (duplication, triplication etc.). Column header description: FamID-family ID, IndID-individual ID, Phen.-AD phenotype (see description below), APOE-APOE-ε4 genotype, Fluidigm CN-Copy number inferred from digital quantitation data, Chip CN-Copy number inferred from genome-wide DNA array data, FISH probes-probes used to identify deletions and duplications (control probe ID follow “/”), FISH results- Del. indicates deletion, Dip. indicates diploid, Dup. indicates duplication.

AD Phenotype (NINDS Criteria):

1. Definite AD (Autopsy)
2. Probable AD (Consensus)
3. Possible AD
4. Non AD dementia
5. Non AD dementia (Consensus)
6. Suspected dementia, documented
7. Suspected dementia, no documentation
8. Presumed no dementia
9. No dementia (Unaffected)
Table 4-4: Detailed results of Fluidigm CNV confirmation in NCRAD pedigree dataset.

<table>
<thead>
<tr>
<th>FamID</th>
<th>IndID</th>
<th>Phen.</th>
<th>APOE</th>
<th>Target Gene</th>
<th>Rx. Count</th>
<th>Control Gene</th>
<th>Rx. Count</th>
<th>Rx. Union</th>
<th>Rx. Intersec.</th>
<th>Gene Quant.</th>
<th>Fluidigm Chip</th>
<th>Chip CN</th>
<th>Fluidigm Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>62090</td>
<td>90M0526</td>
<td>1</td>
<td>0</td>
<td>ATBP1</td>
<td>428</td>
<td>RNaseP</td>
<td>436</td>
<td>555</td>
<td>309</td>
<td>0.5</td>
<td>1</td>
<td></td>
<td>Loss</td>
</tr>
<tr>
<td></td>
<td>90M0525</td>
<td>1</td>
<td>0</td>
<td></td>
<td>586</td>
<td>496</td>
<td>610</td>
<td></td>
<td>472</td>
<td>0.5</td>
<td>1</td>
<td></td>
<td>Loss</td>
</tr>
<tr>
<td>62135</td>
<td></td>
<td></td>
<td></td>
<td>CDH2</td>
<td>566</td>
<td>RNaseP</td>
<td>398</td>
<td>670</td>
<td>294</td>
<td>1.8</td>
<td>4</td>
<td></td>
<td>Gain</td>
</tr>
<tr>
<td></td>
<td>93M0784</td>
<td>1</td>
<td>1</td>
<td></td>
<td>596</td>
<td>383</td>
<td>682</td>
<td></td>
<td>297</td>
<td>1.99</td>
<td>4</td>
<td></td>
<td>Gain</td>
</tr>
<tr>
<td></td>
<td>93M0872</td>
<td>1</td>
<td>1</td>
<td></td>
<td>628</td>
<td>412</td>
<td>692</td>
<td></td>
<td>398</td>
<td>1.01</td>
<td>2</td>
<td></td>
<td>Diploid</td>
</tr>
<tr>
<td>62329</td>
<td></td>
<td></td>
<td></td>
<td>DGV_9478</td>
<td>590</td>
<td>RNaseP</td>
<td>467</td>
<td>702</td>
<td>355</td>
<td>1.5</td>
<td>3</td>
<td></td>
<td>Gain</td>
</tr>
<tr>
<td></td>
<td>92M0524</td>
<td>1</td>
<td>1</td>
<td></td>
<td>599</td>
<td>482</td>
<td>690</td>
<td></td>
<td>391</td>
<td>1.49</td>
<td>3</td>
<td></td>
<td>Gain</td>
</tr>
<tr>
<td>62493</td>
<td></td>
<td></td>
<td></td>
<td>ERMP1</td>
<td>470</td>
<td>RNaseP</td>
<td>353</td>
<td>482</td>
<td>341</td>
<td>0.51</td>
<td>1</td>
<td></td>
<td>Loss</td>
</tr>
<tr>
<td></td>
<td>05AD7725</td>
<td>1</td>
<td>0</td>
<td></td>
<td>538</td>
<td>429</td>
<td>556</td>
<td></td>
<td>411</td>
<td>0.5</td>
<td>1</td>
<td></td>
<td>Loss</td>
</tr>
<tr>
<td>62613</td>
<td></td>
<td></td>
<td></td>
<td>EVC2</td>
<td>648</td>
<td>RNaseP</td>
<td>545</td>
<td>728</td>
<td>465</td>
<td>1.5</td>
<td>3</td>
<td></td>
<td>Gain</td>
</tr>
<tr>
<td></td>
<td>95M2194</td>
<td>1</td>
<td>0</td>
<td></td>
<td>437</td>
<td>327</td>
<td>586</td>
<td></td>
<td>178</td>
<td>1.5</td>
<td>3</td>
<td></td>
<td>Gain</td>
</tr>
</tbody>
</table>
Table 4-4: (Continued)

<table>
<thead>
<tr>
<th>FamID</th>
<th>IndID</th>
<th>Phen.</th>
<th>APOE</th>
<th>Target Gene</th>
<th>Rx. Count</th>
<th>Control Gene</th>
<th>Rx. Count</th>
<th>Rx. Union</th>
<th>Rx. Intersec.</th>
<th>Gene Quant.</th>
<th>Fluidigm CN</th>
<th>Chip CN</th>
<th>Fluidigm Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>62855</td>
<td>04AD7114</td>
<td>1</td>
<td>0</td>
<td>Intergenic</td>
<td>383</td>
<td>RNaseP</td>
<td>396</td>
<td>582</td>
<td>197</td>
<td>1.1</td>
<td>1</td>
<td>Loss</td>
<td></td>
</tr>
<tr>
<td>62855</td>
<td>04AD7481</td>
<td>1</td>
<td>0</td>
<td>RNaseP</td>
<td>582</td>
<td>570</td>
<td>718</td>
<td>434</td>
<td>1.01</td>
<td>1</td>
<td>Loss</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62855</td>
<td>05AD7938</td>
<td>0</td>
<td>0</td>
<td>411</td>
<td>412</td>
<td>581</td>
<td>242</td>
<td>1.05</td>
<td>2</td>
<td>Diploid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62863</td>
<td>04AD7150</td>
<td>1</td>
<td>1</td>
<td>CLDND1</td>
<td>568</td>
<td>RNaseP</td>
<td>442</td>
<td>672</td>
<td>338</td>
<td>1.5</td>
<td>3</td>
<td>Gain</td>
<td></td>
</tr>
<tr>
<td>62863</td>
<td>04AD6981</td>
<td>1</td>
<td>1</td>
<td>EPHA6</td>
<td>649</td>
<td>550</td>
<td>727</td>
<td>472</td>
<td>1.5</td>
<td>3</td>
<td>Gain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62863</td>
<td>04AD6981</td>
<td>1</td>
<td>1</td>
<td>EPHA6</td>
<td>498</td>
<td>RNaseP</td>
<td>511</td>
<td>670</td>
<td>339</td>
<td>1.1</td>
<td>3</td>
<td>Gain</td>
<td></td>
</tr>
<tr>
<td>62863</td>
<td>04AD7150</td>
<td>1</td>
<td>1</td>
<td>FILIP1L</td>
<td>609</td>
<td>452</td>
<td>624</td>
<td>437</td>
<td>1.06</td>
<td>3</td>
<td>Gain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62863</td>
<td>04AD6981</td>
<td>1</td>
<td>1</td>
<td>FILIP1L</td>
<td>531</td>
<td>RNaseP</td>
<td>517</td>
<td>692</td>
<td>356</td>
<td>1.03</td>
<td>3</td>
<td>Gain</td>
<td></td>
</tr>
<tr>
<td>62863</td>
<td>04AD7150</td>
<td>1</td>
<td>1</td>
<td>FILIP1L</td>
<td>493</td>
<td>477</td>
<td>657</td>
<td>313</td>
<td>1.06</td>
<td>3</td>
<td>Gain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62309</td>
<td>91M0636</td>
<td>1</td>
<td>1</td>
<td>APP</td>
<td>507</td>
<td>RNaseP</td>
<td>404</td>
<td>641</td>
<td>270</td>
<td>1.5</td>
<td>3</td>
<td>Gain</td>
<td></td>
</tr>
<tr>
<td>62309</td>
<td>91M0667</td>
<td>1</td>
<td>0</td>
<td>APP</td>
<td>587</td>
<td>466</td>
<td>688</td>
<td>365</td>
<td>1.5</td>
<td>3</td>
<td>Gain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62309</td>
<td>95M2903</td>
<td>1</td>
<td>1</td>
<td>APP</td>
<td>506</td>
<td>488</td>
<td>664</td>
<td>330</td>
<td>1.09</td>
<td>2</td>
<td>Diploid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62309</td>
<td>95M2798</td>
<td>0</td>
<td>0</td>
<td>APP</td>
<td>601</td>
<td>623</td>
<td>732</td>
<td>492</td>
<td>1.03</td>
<td>2</td>
<td>Diploid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62309</td>
<td>95M2844</td>
<td>0</td>
<td>0</td>
<td>APP</td>
<td>511</td>
<td>472</td>
<td>638</td>
<td>345</td>
<td>1.05</td>
<td>2</td>
<td>Diploid</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4-4: The table shows the results from gene quantitation experiments performed using TaqMan probes and Fluidigm 770 digital array. The digital array runs nano-scale qPCR reactions, and hence runs up-to 770 replicates of every reaction. DNA sample from each test subject were run in multiplex using a ‘Fam’ labeled target gene and a ‘Vic’ labeled house-keeping gene. ‘Rx. Count’ column shows the number of replicate reactions and the ‘Rx. Inters.’ column is the number of reactions where both target and house-keeping (RNaseP and/or TERT) signal were detected (replicates). The ‘Gene Quan.’ column shows the ratio of target gene quantified against the diploid control gene. Ratios in the range of ~0.5 indicate a heterozygous deletion, ~1.0 indicates diploid and any ratio >1.5 indicate increase in gene copy number (duplication, triplication etc.).

Column header description: FamID-family ID, IndID-individual ID, Proband-proband from each family, Phen.-AD phenotype (see description below), APOE-No. of copies of APOE-ε4, Fluidigm CN-Copy number inferred from digital quantitation data, Chip CN-Copy number inferred from genome-wide DNA array data, Del. indicates deletion, Dip. indicates diploid, Dup. indicates duplication, Het. Indicates heterozygous and Hom. stands for homozygous.
Table 4-5: FISH images of lymphoblastoid cell lines derived from NIMH EOFAD probands (and the corresponding Fluidigm Digital array ΔCt values).

<table>
<thead>
<tr>
<th>Family ID</th>
<th>Proband FISH</th>
<th>CNV Locus</th>
<th>Target Probe (Cy3-dUTP, red)</th>
<th>Control Probe (FITC-dUTP, green)</th>
<th>Fluidigm CN State (Control gene: RNAseP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50152-NH1</td>
<td></td>
<td>Chr. 3: 87319231 - 87650334</td>
<td>RP11-431M5, RP11-491D12, RP11-152L15</td>
<td>RP11-432A8</td>
<td>Heterozygous deletion (Average ΔCt = 0.415)</td>
</tr>
<tr>
<td>50354-NH2</td>
<td></td>
<td>Chr. 9: 587476 - 992280</td>
<td>RP11-31F19, RP11-130C19, RP11-143M15</td>
<td>RP11-295G24</td>
<td>Heterozygous deletion (Average ΔCt = 0.51)</td>
</tr>
<tr>
<td>51278-NH3</td>
<td></td>
<td>Chr. 9: 2414322 - 2565408</td>
<td>RP11-91N2</td>
<td>RP11-295G24</td>
<td>Heterozygous deletion (Average ΔCt = 0.459)</td>
</tr>
<tr>
<td>52149-NH4</td>
<td></td>
<td>Chr. 21: 23984747 - 27466529</td>
<td>RP11-15D13</td>
<td>CTB-63H24</td>
<td>Heterozygous duplication (Average ΔCt = 1.42)</td>
</tr>
</tbody>
</table>
Table 4-5: FISH images of lymphoblast cells from probands in NIMH families carrying CNVs. ΔCt values generated using Fluidigm Digital arrays and RNAseP as control correlate with the FISH results. Results from Fluidigm assay were in full agreement with 38 FISH confirmed CNVs in NIMH samples, hence for CNVs identified in NCRAD families, FISH confirmation was not performed.
Figure 4-1: Pedigree structure of families belonging to NIMH and NCRAD AD cohorts carrying rare CNVs.
Figure 4-1: (Continued)
Figure 4-1: Probands are indicated by arrows. Phenotype for each individual from top to bottom are: age at onset (in affected individuals) or age at last examination (unaffected individuals); APOE genotype and copy number gain or loss. No DNA or clinical information was available from the founders ("?").
5.1 Discussion

AlzGene and AD&FTD mutation databases that compile results from AD genetics reports indicate an under-representation of CNVs in the published studies (ADFTD, 2008; Bertram, 2008; Cruts, 2009). In contrast to numerous other human disorders, most of the studies in AD genetics are based on nucleotide level variation with the exception of APP loci for disease risk in AD (McNaughton, et al., 2010; Rovelet-Lecrux, et al., 2007). The GWAS reports published to date have utilized small number AD affected subjects (Shaw, et al., 2011) and fail to perform an in-depth and comprehensive CNV analyses (Brouwers, et al., 2011; Heinzen, et al., 2010; Shaw, et al., 2011). Overall, duplication in APP locus remains the only established CNV causing EOFAD, and a thorough and systematic CNV analysis hold immense potential in revaling novel genetic variations causing Alzheimer’s disease.

Analogous to the outcome of genetic studies performed using SNPs vs. mutation detection in families showing Mendelian inheritance of diseases, investigations of larger CNVs have shown more success than studies focused on risk conferring CNPs (Girirajan & Eichler, 2010; McCarroll & Altshuler, 2007). Further, recent reports strongly suggest that rare CNVs show potential in representing an important portion of missing heritability in complex disorders.
(Eichler, et al., 2010; Manolio, et al., 2009; F. Zhang, et al., 2010). Furthermore, rare and fully penetrant mutations in EOFAD pedigrees have provided most valuable insight into the AD pathogenesis, while association studies results for common risk-modulating variants in LOAD have been modest (Bertram, et al., 2010). In contrast to genetic studies in other late onset neurodegenerative disorders, no common variants in the EOFAD genes have been reported that modulate LOAD risk (Bertram, 2011). Taking into consideration all the above facts, the results presented in this doctoral dissertation are the culmination of the efforts to unravel rare, highly penetrant copy-number changes in genes that cause EOFAD.

The size of the CNVs were limited to >100 Kb segments considering the diminishing reliability of the SNP 6.0 DNA array in accurately identifying smaller CNVs. Large CNVs are also called with greater accuracy and show better concordance across different platforms. Moreover, large, rare CNVs currently show the most robust evidence for association with various diseases (see Table 5-1)(Pinto, Marshall, Feuk, & Scherer, 2007). In addition, the majority of the syndromes associated with submicroscopic chromosomal imbalances described in the DECIPHER database (Firth et al., 2009) are attributable to large CNVs segments. This association could be due to one very obvious biological distinction between small and large CNVs i.e., larger CNVs are much more likely
to affect multiple genes, hence influence phenotype and diseases (Guilmatre et al., 2009).

Our analysis of CNVs in EOFAD pedigrees revealed 0.4 to 1.03% of genomic variation due to deletion and 0.4–0.7% due to locus amplification per individual in more than a thousand subjects from NIMH and NCRAD datasets. This is in range with the estimates of earlier reports on HapMap and other populations (Itsara, et al., 2009; Pang, et al., 2010) and in CNV analysis reports using Affymetrix 6.0 array (Ku, et al., 2010). Further analysis for CNVs larger than 100 Kb showed presence of an average of just over 15 CNVs per subject with an average CNV size of 270 Kb. Majority of the CNVs were found to overlap by at least 90% with CNPs reported on DGV. Conversely, most of those CNVs that did not overlap with CNPs were unique to the harboring pedigrees. This observation suggests that public CNV databases may not be fully comprehensive, and in order to capture the entire repertoire of CNVRs more CNV studies from diverse populations and large samples need to be undertaken. Although this study addresses only a small fraction of CNVs, it underlines the untapped genomic variation that could hold clues to novel disease genes.

Rare CNVRs that segregated with the disease in the affecteds from the EOFAD pedigrees are listed in Table 4-2 (page 77). Six out of the nine pedigrees that showed presence of CNVs segregating with disease in the affecteds also
carry the risk allele APOE-ε4, suggesting that these CNVs are unlikely to be the sole cause of EOFAD and further studies investigating effects of any genetic interactions in modulating susceptibility to EOFAD are warranted. For example, genes CHMP2B, VLDLR and CDH2 play an important role in neuronal pathways in addition to being implicated in pathogenesis of multiple neurodegenerative diseases, including AD (C. J. Carter, 2007; Kopan & Ilagan, 2004; Yamazaki, et al., 2010). On the other hand, deletions in ERMP1, A2BP1/ABAT loci, and gain in EVC/CRMP1, appear in absence of other AD risk factors, and considering their functional role in brain, are the most promising candidate genes in our results for further genetic and functional studies (Hammock & Levitt, 2011; Kurnellas, et al., 2010; Ma et al., 2010; Martin, et al., 2008; Yamashita, et al., 2006).

5.2 Functional Implications of CNVs on Alzheimer’s disease

Both case-control and family-based genetic studies consistently confirm the commonly occurring allele - ε4 in the gene APOE, as risk factor that increases AD susceptibility by up to 10 fold. Therefore, in addition to sequencing for pathogenic mutations in the three genes APP, PSEN1 and PSEN2, the nine pedigrees identified in the study were also analyzed for their APOE genotype. Six out of nine families showing a seemingly pathogenic form of inheritance in the rare CNVs also carried at least one copy of the risk ε4 allele. Hence the following discussion on the likely impact of the genes underlying the CNVs on
AD is sub-divided into two groups based on their APOE genotype. This strategy is also utilized in prioritizing the genes for investigation of their functional implications attributable to the change in their copy number.

5.3 CNVs in families with APOE-ε4 risk allele genotype

5.3.1 Role of deletion in CHMP2B and POU1F1 on neuronal autophagy leading to AD

Affected members in family NH1 carry a 331 Kb deletion overlapping genes chromatin modifying protein 2B (CHMP2B) and POU class 1 homeobox 1 (POU1F1). Both the affected individuals are homozygous for APOE-ε4 allele, while the two unaffected siblings were heterozygous for APOE-ε4.

CHMP2B belongs to the chromatin modifying protein family, and is one of the key components of the ESCRT-III complex, and shown to be critical to the autophagic clearance of proteins in all neuronal populations (Filimonenko et al., 2007). ESCRT-III is an endosome-associated hetero-oligomeric protein complex required for sorting of transmembrane proteins (e.g., cell surface receptors) into the multivesicular body (MVB), an endosomal structure that fuses with the lysosome to degrade endocytosed proteins (Babst, Katzmann, Estepa-Sabal, Meerloo, & Emr, 2002). CHMP2B plays an important role in normal formation and functioning of MVBs. MVBs enable degradation of a variety of membrane proteins, such as stimulated growth factor receptors, lysosomal enzymes and lipids etc. via intraluminal vesicles (ILVs), generated by invagination and
scission from the endosomal membrane that results in tiny pockets of protein targeted for clearance and degradation (Rusten, Filimonenko, Rodahl, Stenmark, & Simonsen, 2007).

Neuronal autophagy is a cellular process dedicated to the degradation of cytoplasmic contents, under both normal physiological and pathological conditions. Disruption in ESCRT-III mediated autophagy is attributed to toxic accumulation of protein fragments leading to neurodegeneration (J. A. Lee, Beigneux, Ahmad, Young, & Gao, 2007), further emphasizing the importance of the ECSRT-III pathway to the normal neuronal functioning and maintenance. In line with these finding, CHMP2B has been previously shown to harbor multiple, rare pathogenic mutations leading to Frontotemporal dementia (FTD, OMIM: OMIM: 609512) and Amyotrophic lateral sclerosis (ALS, OMIM: 600795), due to endosomal trafficking disruption (Urwin, et al., 2010). Further, CHMP2B mutations in FTD (CHMP2BΔ10 and CHMP2BIntron5) have shown to disrupt the fusion of endosomes with lysosomes (J. A. Lee & Gao, 2008), leading to neurodegeneration from perturbation of autophagy (Urwin, Ghazi-Noori, Collinge, & Isaacs, 2009). In Alzheimer’s disease, neuronal autophagy seems to be activated in early stages but is impaired as the disease progresses (Yang et al., 2011). Overexpression of FTD mutant (CHMP2BIntron5) in neurons trigger a specific toxic process, leading to dramatic retraction of dendritic trees followed
by cell death; this lethality has been linked to excessive accumulation of autophagosomes, which is similar to the disruption of dendritic spines and synapsis that occurs in the earliest stages of AD pathogenesis (J. A. Lee, Beigneux, et al., 2007). Further, CHMP2B co-localizes with Granulovacuolar degeneration (GVD) - one of the pathological hallmarks in AD (Funk, et al., 2011; Yamazaki, et al., 2010). Therefore, excessive accumulation of autophagosomes due to CHMP2B deletion and subsequent ESCRT-III dysfunctional could be the pivotal pathogenic step that eventually causes AD in family NH1. In addition, unpublished data from our collaborators suggests BACE and γ-secretase are present in autophagosome, further supporting the hypothesis that dysregulation of CHMP2B could play a key role in autophagy disruption and eventually lead to AD.

The adjacent gene POU1F1 (OMIM: 173110) is reported to cause pituitary hormone deficiency and is associated with mental retardation (Y. Sun, et al., 2006; Turton, et al., 2005), further implying role of the deleted loci with susceptibility to neurodegenerative disorders, as seen in the numerous disorders associated above with the loci.
5.3.2 Role of Loss in KANK1 and DMRT genes leading to AD

The 400 KB deletion showed a partial overlap (59%) with a CNP, and spanning KN motif and ankyrin repeat domains 1 (KANK1) and doublesex and mab-3 related transcription factor genes (DMRT1 and DMRT3) in two affected subjects (Onset ages: 64 and 65, carrying APOE-e3,4). The deletion CNV and APOE-ε4 do not segregate with the disease individually, but the combination of both APOE-ε4 and the CNV segregate in both affecteds. The last age at examination of subject-894 (Unaffected, APOE-ε4 negative, carrying deletion) was 85, subject-893 (Unaffected, APOE-ε4 negative, diploid CN in the locus) was 87, and subject-385 (unaffected, APOE-e3,4, diploid CN in the locus) was 71. This CNV maps to the locus associated with Chromosome 9p deletion syndrome, sex development and mental retardation - suggesting involvement of the genes in the loci with neuronal functioning and disorders (Argyriou et al., 2010; Barbaro et al., 2009). This distal region of chromosome 9p is, and clinical phenotype of patients with the 9p deletion syndrome (9p24.3 locus, OMIM: 158170) characterized by mental retardation, trigonocephaly and other dysmorphic features (Hayashi, et al., 2011).

KANK1 regulates cell migration via inhibition of actin polymerization (Roy, Kakinuma, & Kiyama, 2009) suggesting a role for KANK1 in tissue development, although the mechanism of formation of actin stress fibers,
especially its signaling cascade, is not fully elucidated. The pathways affected by loss in KANK1 functionality have been extensively studied in carcinogenesis, and various neurological disorders including Obsessive-compulsive disorder 9p24 (Willour et al., 2004), Myeloproliferative disorders (Kralovics et al., 2005), Cerebral palsy 9p24.3 (Lerer et al., 2005), Monosomy 9p syndrome with Autistic features (Vinci et al., 2007) etc. The deletion CNV could also influence two other genes in the 9p24 loci - FOXD4 and DOCK8, could potentially be responsible for behavioral phenotypes in addition to KANK1 and DMRTs. The DOCK8 gene was disrupted in two unrelated mental retardation patients (Griggs, Ladd, Saul, DuPont, & Srivastava, 2008). The DOCK-family proteins regulate the cytoskeletal reorganization of the actin filament system (Ruusala & Aspenstrom, 2004).

KANK1 also plays a potential role in cytoskeletal reorganization and neurite outgrowth (Kakinuma, Roy, Zhu, Wang, & Kiyama, 2008; Roy, et al., 2009).

DMRTs are widely studied for genes and the sexual regulation of the nervous system and behavior (Matsuda, 2005; Smith & Sinclair, 2004). Although de novo CNVs and other genetic factors are strongly associated with human disorders of sexual development (Tannour-Louet et al., 2010), studies seem to indicate that the DMRTs influence are not limited to sex differentiation and gonadal development (Hong, Park, & Saint-Jeannet, 2007) but also in regulation of neuronal processes (Yao & Capel, 2005). Overall, there are not enough studies
elucidating the genotypic and phenotypic contribution of the DMRT genes in sexual development and behavior (Calvari et al., 2000; Lerer, et al., 2005), however there is clear evidence that pathogenic variants influence behavioral disorders.

In summary, based on the involvement of KANK1 (Kakinuma, Zhu, Wang, Roy, & Kiyama, 2009) in neurological pathways/disorders, and influence of DMRT genes on behavior, it is reasonable to speculate that the deletion CNV in family NH2 spanning the 9p24.3 loci might likely be involved in onset of AD in the affected subjects.

5.3.3 Role of VLDLR deletion on AD via disruption of Reelin related neuronal clearance and degradation pathways

Affected subjects (AAO: 62 and 75, APOE-ε4 positive) in family NH3 carry a 151 KB deletion overlapping an uncharacterized gene FLJ35024, located 46 KB 5’ of Very low density lipoprotein receptor gene (VLDLR), but in close proximity to affect VLDLR activity (C. Lee & Scherer, 2010; Weterman, et al., 2010). FLJ35024 gene is not described in public databases, while VLDLR has been widely studied as a candidate gene in AD (www.alzgene.org), implicated in various human disorders, and crucial to normal neuronal functioning.

VLDLR belongs to the low density lipoprotein receptor (LDLR) gene family of cell surface proteins involved in receptor-mediated endocytosis of specific ligands. VLDLR is highly homologous to apolipoprotein E receptor 2
(ApoER2), another AD associated gene with similar role in normal neuronal functioning (Beffert, Stolt, & Herz, 2004). Functionally, VLDLR is also associated with VLDL-triglyceride metabolism and Reelin (RELN) signaling pathways (Forster, et al., 2010). Pathogenic mutations in VLDLR have been reported to cause VLDLR-associated cerebellar hypoplasia (Boycott & Parboosingh, 1993), further emphasizing its importance in pathways associated with cognition and dementia. VLDLR activity is suggested to directly affect coordinated migration of neurons, critical in the developing and adult brain for healthy functioning of the nervous system (Reddy, Connor, Weeber, & Rebeck, 2011). VLDLR has also been shown to interact with various genes, including numerous other AD associated genes - for example, APOE, CD36, CLU, DAB1, LPL, LRPAP1, RELN, SNX17 (C. J. Carter, 2007; Forster, et al., 2010; Jaeger & Pietrzik, 2008; Spalice et al., 2009), and proposed as one of the functional candidate in AD with important role in disease pathogenesis.

Importantly, VLDLR and ApoER2 via their interaction with bind to cytosolic adaptor protein Dab1 and secreted glycoprotein RELN, are critical to neuronal migration (Bar, Lambert de Rouvroit, & Goffinet, 2000). Loss of RELN function in humans is shown to cause severe developmental disorder, lissencephaly and also implicated in many neurological disorders such as epilepsy, schizophrenia and Alzheimer's disease (Senturk, Pfennig, Weiss, Burk,
& Acker-Palmer, 2011). The VLDLR/reelin pathways are shown to affect hippocampal dendrite development and maturation, memory formation, autophagy, to name a few (Niu, Renfro, Quattrocchi, Sheldon, & D'Arcangelo, 2004). In addition, dysregulation of VLDLR has been shown to impact neuronal plasticity in AD mouse models (Herz & Chen, 2006), and modulate tau phosphorylation C. J. Carter, 2007(Ohkubo et al., 2003) further highlighting the role of VLDLR in AD pathogenesis.

In summary, based on the reports on genetic and functional studies in VLDLR, and the novel deletion CNV in family NH3, further studies to elucidate the effects of CNVs in VLDLR leading to AD could unravel novel AD pathogenesis pathways.

5.3.4 Role of gain in CDH2 gene on Cadherin signaling, neurogenesis and AD

Two of the three affected subjects (onset age 64 and 65, APOE-ε4 positive) in family ND2 show gain in Cadherin-2 (CDH2) copy number. CDH2 belongs to the cadherin family genes that encode proteins mediating calcium-ion-dependent cell adhesion. CDH2, also called N-cadherin or neuronal-cadherin, is shown to play an important role in synaptic adhesion, dendritic morphology and neuritic growth (Aiga, et al., 2011; Lefort, et al., 2011; Malinverno, et al., 2010; Rieger, et al., 2009; Tan, et al., 2010).
Numerous studies report that cadherin family proteins have a critical role in formation of proper brain structure and connectivity during early development (Fannon & Colman, 1996; N. Uchida, Honjo, Johnson, Wheelock, & Takeichi, 1996). In-vivo and in-vitro experiments have revealed that cadherins regulate dendritic spine morphogenesis and related synaptic functions (Togashi et al., 2002). Cadherins have also been implicated in the induction of long-term potentiation (LTP) of hippocampal synaptic strength in a cellular model for learning and memory (T. C. Wang et al., 2011), which is also implicated in the early stages of AD. Moreover, NMDA receptor activation, which is critically required for synaptic plasticity is suggested to provide a signal that regulates the molecular configuration of synaptic CDH2, and therefore regulate strength of adhesion across the synaptic cleft (Huntley, Gil, & Bozdagi, 2002; Jungling et al., 2006). Additionally, there exists at the synapse a pool of surface cadherins that is untethered to the actin cytoskeleton and capable of a rapid and reversible dispersion along the plasmalemma under conditions of strong activity (Nose, Nagafuchi, & Takeichi, 1987). Recent reports also indicate that CDH2 activity is sensitive to gene dosage (Jossin & Cooper, 2011). The authors report that CDH2 was required for neuronal migration, and partial knockdown or over-expression of CDH2 transcript disrupted in neurons whose endocytosis of CDH2 was blocked, suggesting that excessively high or low levels of surface CDH2
dysregulates neuronal migration. Another report from the same group also suggests involvement of reelin signaling pathway as an extracellular signal that regulates CDH2 surface localization (Kawauchi et al., 2010), further stressing the pivotal role that CDH2 might play in neurogenesis.

In addition to its wide-ranging functional role in neuronal functioning, previous studies also indicate that gain in CDH2 could have a direct impact on pathways leading to AD. Altered metabolism of CDH2 results in synaptic dysfunction, a primary feature of Alzheimer's disease (Restituito et al., 2011). It has also been suggested elsewhere that variation in CDH2 interaction with γ-secretase complex (Kopan & Ilagan, 2004) could possibly affect AD onset. Further, the proteolytic machinery comprising metalloproteases and γ-secretase, the key intramembrane aspartyl protease involved in amyloidogenic APP cleavage and Alzheimer's disease, also cleaves several other substrates. Activity-dependent substrate cleavage by synaptic metalloproteases and γ-secretase of CDH2 is suggested to modify synaptic transmission (Gong et al., 2010). A number of reports have shown that dimerization of APP modulates Aβ production, and CDH2-based synaptic contact is tightly linked to Aβ production (Asada-Utsugi et al., 2011). A recent report also suggests that CDH2 expression levels affect APP dimerization and metabolism- linking synaptic contact and Aβ production (Vunnam & Pedigo, 2011). In neurons, Presenilin 1(PS1)/gamma-
secretase is located at the synapses bound to CDH2 (Uemura et al., 2009), indicating that CDH2-mediated synaptic adhesion might also directly modulate Aβ secretion as well as the Aβ-42/40 ratio via PS1/CDH2 interactions. The authors suggest that CDH2 might regulate the adhesive force that mediates and stabilizes the attraction between neuritis (Giagtzoglou, Ly, & Bellen, 2009).

Abnormal expression of CDH2 is also associated to invasiveness and metastasis in cancer cells by affecting cell motility (Vunnam & Pedigo, 2011).

Overall, Neural cadherin or CDH2 plays a crucial role in modeling synaptic architecture, and modifying the strength of the synaptic signal, playing a crucial role in modulating synaptic structure, function, and plasticity, which extends beyond initial growth and development. To our knowledge, this is the first risk variant in CDH2 reported to date, and considering the vital involvement of CDH2 with neuronal pathways associated with AD, the effects of gain in CDH2 copy number should be further studied for the precise mechanism leading to EOAD.

5.3.5 Implication of CNV in ADHD and dopaminergic system associated loci in AD

Two affected individuals (Onset age: 37 and 63, APOE-ε4 positive, no unaffected subjects) in family ND3 show presence of a 550 Kb duplication. The CN gain segment overlaps and extends beyond CNPs reported in DGV and
harbors multiple small segments of CNPs around the breakpoint indicating susceptibility of the locus to CN changes. The CNV is located in the intergenic region with LPHN3 (0.65 Mb centromeric), SRD5A2L2 (1.1 Mb telomeric) and EPHA5 (2.1 Mb telomeric) in close proximity.

LPHN3 belongs to the gene family Latrophilins, which were initially discovered for their role as receptors for a-latrotoxin (a-LTX), a potent neurotoxin isolated from black widow spider venom (Davletov, Shamotienko, Lelianova, Grishin, & Ushkaryov, 1996; Lelianova et al., 1997). Latrophilins are a relatively new family of G protein-coupled receptors of unknown native physiological function, but extensive research has been done on their participation in inducing secretion of neurotransmitters and hormones in their target cells via stimulating exocytosis (Davletov et al., 1998; Rahman et al., 1999; Silva, Liu-Gentry, Dickey, Barnett, & Misler, 2005). Although functionally LPHN3 is not fully understood, other than its role as receptor involved in inducing release of neurotransmitters, it is widely implicated in ADHD onset, characterized by hyper-functioning dopamine system. One study reports that LPHN3 is expressed in regions of the brain most affected in ADHD – the amygdala, caudate nucleus, pontine nucleus, putamen, hippocampus, cerebral cortex, and cerebellar Purkinje cells (Jain et al., 2007; Krain & Castellanos, 2006). It is hypothesized that ADHD could occur due to the dysregulation of neurotransmission in these brain structures, which
participate in three of the four main dopaminergic systems in the brain (Russell, Sagvolden, & Johansen, 2005). In line with the previous study, another recent report also suggests that genes in 11q loci are involved in a cooperative interaction with LPHN3 doubling the risk for ADHD (Jain et al., 2011).

Dopaminergic systems have been implicated previously in AD pathogenesis and progression (Martorana, Esposito, & Koch, 2010), and changes in LPHN3 activity on synaptic activity could provide further evidence for its role in AD onset, if any. In addition, LPHN3 dysregulation increasing susceptibility to ischemia (especially in hippocampus), which has been linked to increase in vulnerability to neurodegeneration (Bin Sun, Ruan, Xu, & Yokota, 2002). In summary, the reports we found in our literature survey suggest that gain in the LPHN3 locus could affect neurotransmission in AD affected brain regions, and further functional evidence could elucidate if the CNV triggers a pathogenic mechanism leading to AD.

For literature review on functional implications of EPHA5, please refer to the discussion on EPHA6 gain in family ND6. SRD5A2L2 also termed as TECRL and synaptic 2-like protein is not fully characterized, however we will continue to investigate possible effects of the gain in the locus in the gene in leading to AD pathogenesis.
5.3.6 Role of CNV in Ephrin receptor gene EPHA6 on synaptogenesis and AD

The two affected APOE-ε4 positive subjects in family ND6 (onset age: 64 and 69) carry a 0.73 Mb intergenic gain CNV. Eph receptor A6 (EPHA6) gene is located 0.33 Mb telomeric and the only gene in close proximity. Ephrins or Eph receptors are a family of receptor protein-tyrosine kinases that are implicated in regulating neuronal axon guidance and in patterning of the developing nervous system, in addition to serving towards a patterning and compartmentalization role outside of the nervous system (Wilkinson, 2000). Eph receptors and ephrins mediate cell-contact-dependent repulsion, and modulate the cellular response via activation of actin cytoskeleton (Lai & Ip, 2009). Eph receptors and ephrins have thus emerged as key regulators of the repulsion and adhesion of cells that underlie the establishment, maintenance, and remodeling of patterns of cellular organization - including synaptogenesis and spine morphogenesis (Mellitzer, Xu, & Wilkinson, 1999). Hence Eph ligands and their cognate Eph receptors have been studied in great detail for their role in axonal guiding during neural development and later participate in activity-dependent structural plasticity and in long-term changes in synaptic strength - which are the cellular basis for learning and memory (Klein, 2009). Specifically, EPHA6 is highly expressed in the brain and shown to play a crucial role in forming such neuronal networks (Orioli & Klein, 1997). Contradicting the CN gain seen in the affecteds, learning
and memory impairment has been observed in EPHA6 knock-out mice (Savelieva, et al., 2008), however it does not exclude the possibility of CNV induced EPHA6 dysregulation.

In AD, early changes in hippocampal Eph receptors have been shown to precede the onset of memory decline in mouse models of Alzheimer's disease (Simon et al., 2009). Alterations in the Eph receptors in aging AD mice were suggested to play a role in synaptic dysfunction in the hippocampus leading to cognitive impairment, indicating that Eph receptors could influence cognitive impairment. In addition, another cell-adhesion associated gene, disintegrin and metalloproteinase domain-containing protein 10 (ADAM-10), is a principal player in signalling via the Notch and Eph/ephrin pathways. Mutations in the gene were shown to increase α-secretase activity that lead to AD (M. Kim et al., 2009). The functional ADAM metalloproteinases are involved in "ectodomain shedding" of diverse growth factors, cytokines, receptors and adhesion molecules (Edwards, Handsley, & Pennington, 2008), and EPHA6 involvement with ADAM10 activity further highlights the importance of Eph receptor activity in synapses.

In addition, several GWAS report association of the loci with a variety of phenotypes, including: longevity (Sebastiani, et al., 2010), risperidone response in schizophrenic subjects (Ikeda, et al., 2010), obesity (Glessner, et al., 2010) and
male infertility (Aston & Carrell, 2009). These reports indicate that the genes in the locus might have a range of phenotypic contributions, and a large CNV could likely confer a phenotypic effect. Based on the above studies, studies of perturbation in Eph pathways leading to synaptic dysfunction and AD could further confirm or refute any pathogenic effects of a CNV in EPHA6.

5.4 CNVs in families negative for APOE-ε4 genotype

5.4.1 Role of deletion in Ataxin related neurodegeneration loci and AD pathogenesis

Both of the affected individuals in this family (Onset age: 56 and 68, APOE-ε4 negative, no unaffecteds) carry a 110 Kb deletion in an intergenic region of 16p13.2. The CNV does not encompass genes but ataxin 2-binding protein 1 (A2BP1) is located 0.3 Mb telomeric and 4-aminobutyrate aminotransferase (ABAT) is located 0.57 Mb centromeric to the CNV breakpoint identified using the array data. Both A2BP1 and ABAT are associated with various neuronal pathways and associated with aging and neurodegenerative diseases.

A2BP1 is a RNA-binding protein (Ma, et al., 2010) involved in regulating tissue-specific alternative splicing by binding the RNA cis-regulatory element UGCAUG (Kuroyanagi, 2009). A2BP1 regulates alternative splicing of tissue-specific exons by binding to the hexanucleotide UGCAUG through its RNA
recognition motif, and is shown to have an important role in neuron-specific splicing (C. Zhang et al., 2008). In addition to binding the UGCAUG splicing motif, A2BP1 is a binding partner for the ATXN2 protein (Lastres-Becker, Rub, & Auburger, 2008; Lessing & Bonini, 2008), implicated in spinocerebellar ataxia type 2 (SCA2), which also contains predicted RNA binding and RNA splicing motifs, further affirming the role of the gene family in mRNA degradation and regulating translation (van de Loo, Eich, Nonis, Auburger, & Nowock, 2009). Studies also suggest a role for A2BP1 in embryogenesis as well as in the adult nervous system, possibly mediated by a function in RNA distribution or processing (Kiehl, Shibata, Vo, Huynh, & Pulst, 2001). A2BP1 is predominantly expressed brain, transcripts were found in various regions of the CNS including cerebellum, cerebral cortex, brain stem, and thalamus/hypothalamus, specifically in the cytoplasm of Purkinje cells and dentate neurons in a punctate pattern (Shibata, Huynh, & Pulst, 2000; Underwood, Boutz, Dougherty, Stoilov, & Black, 2005), further highlighting its ubiquitous role in neuronal transcript-splicing.

ATXN2, the A2BP1 ligand, is also implicated as an important risk factor for ALS and progressive supranuclear palsy (Ross et al., 2011), indicating that ATXN2 may predispose to other neurodegenerative diseases. Similarly, A2BP1 has been implicated in numerous neuronal disorders, and hypothesized to have an important role in a hypothesized ‘ataxin-1-induced neurodegenerative
diseases’ (Fernandez-Funez et al., 2000). It is postulated that by protein folding and protein clearance pathways are dysregulated, and with aging lead to neurodegeneration. A2BP1 is also proposed as a plausible candidate gene in Autism (Bauman & Kemper, 2005) as well. Postmortem studies of brains from individuals with autism have shown neuroanatomic abnormalities of the cerebellum and limbic system, including the hippocampus.

ATXN1 was identified in our study as a risk factor in AD onset (C. Zhang et al., 2010) by increasing beta-secretase processing of beta-amyloid precursor protein. Data also suggests that the interaction between AD candidate gene APP like protein 2 (APLP2) and ataxin-7, and proteolytic processing of APLP2 may contribute to the pathogenesis of SCA7 (Takahashi-Fujigasaki et al., 2011). These findings suggest the possibility of hitherto unknown role of A2BP1 (and possibly ATXN2) could modulate AD susceptibility. Reduced A2BP1 expression also results in impaired long-term potentiation (Huynh, Maalouf, Silva, Schweizer, & Pulst, 2009), and thus could have an important role in triggering the synaptic cascade of AD related pathways.

The other gene in close proximity to the CNV - ABAT, is responsible for catabolism of gamma-aminobutyric acid (GABA), an important, mostly inhibitory neurotransmitter in the central nervous system, into succinic semialdehyde. GABA is ubiquitously detected in brain and estimated to be
present in nearly one-third of human synapses. ABAT deficiency phenotype includes psychomotor retardation, hypotonia, hyperreflexia, lethargy, refractory seizures, and EEG abnormalities (Dickstein et al., 2007). ABAT mediated inhibitory responses and action potential firing rates are also significantly increased with age, suggesting that age-related neuronal dysfunction, which must underlie observed decline in cognitive function, could include alterations in receptors, loss of dendrites, and spines and myelin dystrophy, as well as the alterations in synaptic transmission. These alterations in the brain are suggested to constitute the substrate for age-related loss of cognitive function. The balancing effects on excitatory (glutamate) and inhibitory (GABA) transmission—in a synapse-specific manner could be altered due to the CNV in ABAT, affecting LTP and memory processes. Moreover, the roles of neurotransmitter systems are considered important in neurogenesis and could implicate ABAT dysregulation leading to AD pathogenesis (Young, Taylor, & Bordey, 2011).

5.4.2 Role of deletion spanning an uncharacterized metallopeptidase in EOAD

The two affected members in family ND4 showing onset ages of 40 and 42 years (APOE-ε4 negative, no unaffecteds) carry a 124 Kb deletion overlapping endoplasmic reticulum metallopeptidase (ERMP1) and predicted transcript CIP150 (KIAA1432). ERMP1 (Fxna in mice) was identified recently (Garcia-Rudaz et al., 2007) and is not characterized to a great extent. However, two
studies available on pubmed suggest that ERMP1 activity is detected in brain. One study on proteome alterations in transgenic AD mouse model showed decrease in ERMP1 expression (Martin, et al., 2008) without any further information on functional implications. Another study reported a slightly higher expression in epilepsy mouse models (Bergren, et al., 2009). Nevertheless, based on the ages of onset in affected individuals, and without any other known pathogenetic factors to explain the early-onset form of AD in the family, we have undertaken in-vitro and in-vivo studies to elucidate the role of ERMP1 deletion on APP processing pathways to identify any pathogenic effects leading to AD.

5.4.3 Role of CRMP1 CNV on Semaphorin-3A associated neuronal assembly and migration in EOAD

Both affected individuals (Onset age: 52 and 56, APOE-ε4 negative) in family ND5 carry 240 Kb gain, overlapping two genes that cause Ellis-Van Creveld syndrome (OMIM: 225500) – EVC, EVC2, and another gene collapsin response mediator protein-1 (CRMP1). Mutations in EVCs cause Ellis-Van Creveld syndrome (EvC, OMIM: 225500) and Weyers acrofacial dysostosis (WAD, OMIM: 193530) – by different mutations in EVC and EVC2. EvC syndrome is an autosomal recessive skeletal dysplasia characterized by short limbs, short ribs, postaxial polydactyly, and dysplastic nails and teeth, with congenital cardiac defects, while WAD shows autosomal dominant inheritance of
pathogenic alleles, prompting the authors to conclude that these disorders are allelic conditions (Baujat & Le Merrer, 2007; Ruiz-Perez et al., 2000). Studies revealed that cilia-mediated Hedgehog (Hh) signaling defects in the absence of EvC (Valencia et al., 2009) leads to the phenotypic abnormality, thus arriving to a conclusion that EvC and WAD result from tissue specific disruption of the response to Hh ligands (Ruiz-Perez & Goodship, 2009).

On the other hand CRMP1 shows closer involvement in functional pathways that are associated with AD. CRMP1 is highly expressed in the brain (Schmidt & Strittmatter, 2007), and is widely studied for its interaction with semaphorin-3A (SEMA3A). SEMA3A is a secreted protein member belonging to the semaphorin family and is involved with and its role in neural growth and axonal guidance (Fukada, et al., 2000; Kurnellas, et al., 2010; Mukherjee, et al., 2009; Yamashita, et al., 2006). SEMA3A functions both, as either a chemo-repulsive agent, inhibiting axonal outgrowth; or as a chemo-attractive agent stimulating the growth of apical dendrites and vital for normal neuronal pattern development (Schmidt & Strittmatter, 2007).

Studies show that CRMP1 regulates neuronal migration and patterning by mediating Reelin signaling pathway (Yamashita, et al., 2006). Reelin signaling pathways seem to appear in a functionally related manner (three put of nine CNVs) in our analysis, suggesting that disruption of a common pathway
involved in synaptogenesis could be the underlying cause of EOAD.

Importantly, CRMP1 knockout mice showed defects in neuronal migration that were not compensated by other CRMP family genes (Buel, Rush, & Ballif, 2010), further emphasizing their key role in synaptogenesis.

Moreover, knock-down in CRMP1 promoted death of spinal cord neurons (Kurnellas, et al., 2010) and overall neuronal loss (Deo et al., 2004) suggesting that CRMP1 might play an important role in neuronal regeneration. CRMPs are also reported to modulate microtubule assembly (Kieran & Greensmith, 2004) and reorganization of actin filaments and axonal protein trafficking (Yuasa-Kawada et al., 2003) indicating that CRMP1 dysregulation could also cause degeneration in healthy neurons. CRMP1 involvement in sema 3A-induced spine development in the cerebral cortex was shown to be regulated by phosphorylation of CRMP1 by Cdk5 (Yamashita et al., 2007). In Alzheimer’s mouse models, disruption of sequential phosphorylation of CRMPs, an important process of SEMA3A signaling, was postulated to cause the pathological aggregation of the microtubule-associated proteins (Y. Uchida et al., 2005). Further, CRMP2 hyperphosphorylation is reported to be characteristic of Alzheimer's Disease but not a common feature in other neurodegenerative diseases (Williamson et al., 2011). Furthermore, abnormal phosphorylation of CRMPs specific to AD and independent of the APP processing and Aβ
neurotoxicity could also indicate that dysregulation in CRMPs is an early event in AD pathogenesis, possibly caused by disruption in neuritic growth (Good et al., 2004).

In summary, based on our background research, CRMP1 seems to be highly plausible candidate gene for further studies to unravel its role in perturbances in neuronal development via disruption of axonal growth and guidance. Further studies are required to understand the functional implication of CNV in leading to AD, possibly by neurodegeneration induced by neuronal collapse, or indirectly by abrogating the recovery capabilities of the aging neurons.

5.5 Final Remarks

In summary, the CNVs identified in our study are consistent with reports suggesting occurrence of CNVs in higher frequency in region harboring genes associated with brain functions (Cooper, et al., 2007; Henrichsen, et al., 2009; J. A. Lee & Lupski, 2006). Similar to many of the CNV studies in the recent publications (Conrad, et al., 2010; C. Lee & Scherer, 2010), the strongly suggestive functional role of genes underlying these rare CNVs justify further in-depth functional studies to unravel their roles in AD pathogenesis. However, owing to the limited understanding of the complexities of functional implication of CNVs in the genome, elucidating the role of these rare CNVs and underlying genes will
require creative solutions in unraveling their role in the disease onset. In addition, further CNV analysis in larger cohorts (Cook & Scherer, 2008; Stankiewicz & Lupski, 2010; Vassos, et al., 2010) could identify the minimal pathogenic segment that modifying susceptibility to AD.

5.6 Future directions

In humans, CNVs are reported to occur in higher frequency in genes/loci associated with brain functions (Cooper, et al., 2007; Henrichsen, et al., 2009; J. A. Lee & Lupski, 2006); thus, our results are in concordance with these observations. Nonetheless, significant enrichment of genes specific to certain processes and pathways, such as, olfactory receptors, signal transduction, immune functions are also commonly reported in various populations (Fanciulli et al., 2007; Gonzalez, et al., 2005; Hasin-Brumshtein, Lancet, & Olender, 2009; Hasin et al., 2008; McKinney et al., 2010). Therefore, further in-depth CNV analysis using higher-resolution data to further our understanding on the genomic re-arrangements holds a vast potential in revealing hitherto unknown AD genetic factors. In addition to extending CNV analysis to larger AD cohorts, using newer high-resolution genotyping/sequencing platforms to investigate smaller CNV segments should be taken into consideration. Expanding the study to include smaller CNV segments hold potential to unraveling complex re-arrangements in the CNV loci (Frazer, Murray, Schork, & Topol, 2009). However the downside of
the strategy similar to other high-throughput assays is the large number of ‘hits’ that will need confirmation and validation (Conrad, et al., 2010; Gautam, et al., 2011; Kloppoki & Mundlos, 2011; C. Lee & Scherer, 2010).

In summary, the CNV analyses reported in this study represent the first comprehensive and systematic investigation for presence of pathogenic CNVs in AD. Similar to many of the recent CNV studies, additional studies are required to confirm the pathogenic role of the novel CNVs identified here. Considering the low prevalence of the CNVs, functional evidence to unravel the consequences of CNVs on gene expression and associated pathways are essential to further corroborate our findings. Lastly, these results highlight the importance of the role of rare CNVs in explaining the missing heritability of widely prevalent complex disorders like AD.
Table 5-1: Summary of rare CNVs in human disorders that led to the identification of the underlying gene defect

<table>
<thead>
<tr>
<th>Locus</th>
<th>CNV</th>
<th>Target gene</th>
<th>Disorder</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1q21.3</td>
<td>Dosage effect</td>
<td>LCE3C, LCE3B</td>
<td>Psoriasis</td>
<td>(de Cid et al., 2009)</td>
</tr>
<tr>
<td>2q31-q32</td>
<td>Dup</td>
<td>HOXD</td>
<td>Mesomelic dysplasia</td>
<td>(Kantaputra et al., 2010)</td>
</tr>
<tr>
<td>2q35</td>
<td>Dup</td>
<td>IHH</td>
<td>Syndactyly type 1</td>
<td>(Klopopcki et al., 2011)</td>
</tr>
<tr>
<td>4q21</td>
<td>Dup, Trip</td>
<td>SNCA</td>
<td>Parkinson disease</td>
<td>(Polymeropoulos et al., 1996)</td>
</tr>
<tr>
<td>5q13</td>
<td>Del, Dup</td>
<td>SMN1, SMN2</td>
<td>Spinal muscular atrophy</td>
<td>(Lefebvre et al., 1995)</td>
</tr>
<tr>
<td>5q23.2</td>
<td>Dup</td>
<td>LMNB1</td>
<td>Autosomal dominant leukodystrophy</td>
<td>(Padiath et al., 2006)</td>
</tr>
<tr>
<td>5q35.3</td>
<td>Dominant del.</td>
<td>NSD1</td>
<td>Sotos syndrome</td>
<td>(Visser et al., 2005)</td>
</tr>
<tr>
<td>7q11.23</td>
<td>Del</td>
<td>Multiple</td>
<td>Williams-Beuren syndrome.</td>
<td>(Peoples et al., 2000)</td>
</tr>
<tr>
<td>7q36</td>
<td>Dup</td>
<td>SHH</td>
<td>Polysyndactyly syndrome</td>
<td>(Wieczorek et al., 2010)</td>
</tr>
<tr>
<td>8q12.1</td>
<td>Dominant del.</td>
<td>CHD7</td>
<td>CHARGE syndrome</td>
<td>(Vissers et al., 2004)</td>
</tr>
<tr>
<td>15q11.1q12</td>
<td>Del (Mat.)</td>
<td>UPD15</td>
<td>Angelman syndrome;</td>
<td>(Matsuura et al., 1997)</td>
</tr>
<tr>
<td>15q11.1q12</td>
<td>Del (Pat.)</td>
<td>Multiple</td>
<td>Prader-Willi syndrome;</td>
<td>(Amos-Landgraf et al., 1999)</td>
</tr>
<tr>
<td>16p13.3</td>
<td>Dominant del.</td>
<td>TSC1, TSC2</td>
<td>Tuberous sclerosis</td>
<td>(Kozlowski et al., 2007)</td>
</tr>
<tr>
<td>17p11.2</td>
<td>Del</td>
<td>RAI1</td>
<td>Smith-Magenis syndrome</td>
<td>(K. S. Chen et al., 1997)</td>
</tr>
<tr>
<td>17p11.2</td>
<td>Dup</td>
<td>Multiple</td>
<td>Post Tubal Ligation Syndrome</td>
<td>(Potocki et al., 2007)</td>
</tr>
<tr>
<td>17p12</td>
<td>Dup</td>
<td>PMP22</td>
<td>Charcot-Marie-Tooth</td>
<td>(Chance et al., 1994)</td>
</tr>
<tr>
<td>17p12</td>
<td>Del</td>
<td>PMP22</td>
<td>Hereditary neuropathy</td>
<td>(Reiter et al., 1996)</td>
</tr>
<tr>
<td>17p13.3</td>
<td>Del</td>
<td>LIS1</td>
<td>Miller-Dieker syndrome;</td>
<td>(Cardoso et al., 2003)</td>
</tr>
<tr>
<td>17q11.2</td>
<td>Dominant del.</td>
<td>NF1</td>
<td>Neurofibromatosis 1</td>
<td>(De Luca et al., 2007)</td>
</tr>
<tr>
<td>17q12</td>
<td>Multiallelic effects</td>
<td>CCL3L1</td>
<td>HIV/AIDS susceptibility and multiple diseases</td>
<td>(Burns et al., 2005; Gonzalez, et al., 2005)</td>
</tr>
<tr>
<td>17q24.2</td>
<td>Dup</td>
<td>Intergenic</td>
<td>Hypertrichosis terminalis</td>
<td>(M. Sun et al., 2009)</td>
</tr>
<tr>
<td>17q24.3</td>
<td>Dup</td>
<td>Intergenic</td>
<td>Female-to-male sex reversal</td>
<td>(Cox, Willatt, Homfray, & Woods, 2011)</td>
</tr>
<tr>
<td>17q24.3</td>
<td>Del, Dup</td>
<td>SOX9</td>
<td>Cooks syndrome</td>
<td>(Kurth et al., 2009)</td>
</tr>
<tr>
<td>20p12</td>
<td>Dup</td>
<td>BMP2</td>
<td>Brachydactyly type A2</td>
<td>(Dathe et al., 2009)</td>
</tr>
<tr>
<td>21q21</td>
<td>Dup</td>
<td>APP</td>
<td>Alzheimer disease</td>
<td>(McNaughton, et al., 2010)</td>
</tr>
<tr>
<td>22q11.2</td>
<td>Del</td>
<td>TBX1</td>
<td>DiGeorge syndrome</td>
<td>(Edelmann et al., 1999)</td>
</tr>
</tbody>
</table>
Table 1: Contd.

<table>
<thead>
<tr>
<th>Locus</th>
<th>CNV</th>
<th>Target gene</th>
<th>Disorder</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple</td>
<td>Complex</td>
<td>Multiple</td>
<td>Bipolar disorder</td>
<td>(Alaerts & Del-Favero, 2009)</td>
</tr>
<tr>
<td>Multiple</td>
<td>Complex</td>
<td>Multiple</td>
<td>Autism</td>
<td>(Sanders, et al., 2011)</td>
</tr>
<tr>
<td>Multiple</td>
<td>Complex</td>
<td>Multiple</td>
<td>Schizophrenia</td>
<td>(Vacic, et al., 2011)</td>
</tr>
<tr>
<td>Multiple</td>
<td>Complex</td>
<td>Multiple</td>
<td>ADHD</td>
<td>(Williams et al., 2010)</td>
</tr>
<tr>
<td>Xp</td>
<td>Del</td>
<td>SHOX</td>
<td>L’éli–Weill dyschondrosteosis</td>
<td>(J. Chen et al., 2009)</td>
</tr>
<tr>
<td>Xp21.1</td>
<td>Recessive del.</td>
<td>DMD</td>
<td>Duchenne/Becker muscular dystrophy</td>
<td>(Stockley, Akber, Bulgin, & Ray, 2006)</td>
</tr>
<tr>
<td>Xp21.2</td>
<td>Del</td>
<td>DAX1</td>
<td>Sex reversal</td>
<td>(Smyk et al., 2007)</td>
</tr>
<tr>
<td>Xq22.2</td>
<td>Dup, Del</td>
<td>PLP1</td>
<td>Pelizaeus-Merzbacher syndrome</td>
<td>(J. A. Lee et al., 2006)</td>
</tr>
<tr>
<td>Xq28</td>
<td>Del</td>
<td>MECP2</td>
<td>Rett syndrome</td>
<td>(Amir et al., 1999)</td>
</tr>
</tbody>
</table>

Abbreviations: Dup, duplication or gain in copy number (CN); del, deletion or loss in CN; trip, triplication gain CN with four copies of gene/loci; Complex, complex re-arrangements; mat, maternal; pat, paternal.
LIST OF REFERENCES

DGV. (2011). Database of Genomic Variants. http://projects.tcag.ca/variation/project.html

Wieczorek, D., Pawlik, B., Li, Y., Akarsu, N. A., Caliebe, A., May, K. J., et al. (2010). A specific mutation in the distant sonic hedgehog (SHH) cis-regulator (ZRS) causes Werner mesomelic syndrome (WMS) while complete ZRS duplications underlie Haas type polysyndactyly and preaxial polydactyly (PPD) with or without triphalangeal thumb. *Hum Mutat, 31*(1), 81-89.

Appendix
Abbreviations

A2BP1: Ataxin-2 binding protein-1

AAO: Average onset age

AD: Alzheimer’s disease

ADRCs: Alzheimer’s Disease Research Centers

AlzGene: AlzGene Database of AD genetic studies

AMPA: α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor

APOE: Apolipoprotein E protein

APP: Amyloid precursor protein

ASD: Autism spectrum disorder

Aβ40: amyloid-β-protein 40-mer

Aβ42: amyloid-β-protein 42-mer

BAC: Bacterial artificial chromosome

CAA: Cerebral amyloid angiopathy

CHMP2B: Charged multivesicular body protein 2b protein

CMT1a: Charcot–Marie–Tooth disease type 1a

CN: Copy-number (gene and/or DNA)

CNAM: Copy number analysis module

CNP: Copy number polymorphism

CNVs: copy number variations
CRMP1: Collapsin response mediator protein 1

DECIPHER: Database of chromosomal imbalance

Del.: Deletion in the genomic loci

DGV: Database of Genomic Variants

Dip.: Diploid

DS: Down's syndrome i.e., trisomy of chromosome 21

Dup.: Duplication in the genomic loci

EOFAD: Early-onset familial form of Alzheimer’s disease

EPHA6: Ephrin type-A receptor 6 protein

ERMP1: Endoplasmic reticulum metallopeptidase 1 protein

FBAT: Family based association tests

FISH: fluorescence in situ hybridization

FoSTeS: Fork Stalling and Template Switching

FTD: Frontotemporal dementia

GVD: Granulovacuolar degeneration

GWAS: Genome-wide association studies

HEFP-SBE: high efficiency fluorescence polarization single base extension

Het.: Heterozygous

hg18: Human reference genome build version 18

HMM: hidden Markov model segmentation algorithm
HNPP: Hereditary Neuropathy with liability to Pressure Palsies

Hom.: Homozygous

Kb: kilobases

LCR: Low-copy repeats

LOAD: Late-onset form of Alzheimer’s disease

LTD: Long-term synaptic depression

LTP: Long-term synaptic potentiation

MAPD: Median absolute pairwise difference metrics in Affymetrix DNA array

Mat.: Maternal

Mb: Megabases

NAHR: Non-allelic homologous recombination

NCRAD: National Cell Repository for AD

NHEJ: Non-homologous end joining

NIMH: National Institute of Mental Health

NMDA: (N-methyl-D-aspartic acid)-type glutamate receptors

OMIM: Online Mendelian Inheritance in Man a database

Pat.: Paternal

PBAT: Pedigree based association tests

Phen.: Phenotype

PMP22: Peripheral myelin protein 22 protein
PrPc: Prion protein
PSEN1: presenilin 1 protein
PSEN2: presenilin 2 protein
QC: Quality control metrics
qPCR: Quantitative real-time
RNAseP: Ribonuclease P protein
Rx.: Replicates of reactions
SD: Segmental duplications
SMA: Spinal muscular atrophy
SMN1: Survival motor neuron protein 1
SMN2: Survival motor neuron protein 2
SNCA: Alpha-synuclein
SNPs: single nucleotide polymorphisms
sQM-PCR: Semi-Quantitative Multiplex PCR
SVS: Golden Helix SNP & Variation Suite
Trip.: Triplication in the genomic loci
TSC1: Tuberous sclerosis protein 1
TSC2: Tuberous sclerosis protein 2
VLDLR: Very low density lipo-protein receptor
VNTR: Variable Number Tandem repeats
Supplementary Tables
Supplementary Table 1: Additional CNV confirmation in probands using TERT house-control gene instead of the RNaseP.

<table>
<thead>
<tr>
<th>FamID</th>
<th>Proband</th>
<th>Phen</th>
<th>APOE</th>
<th>Target Gene</th>
<th>Rx. Count</th>
<th>Control Gene</th>
<th>Rx. Count</th>
<th>Rx. Union</th>
<th>Rx. Intersec.</th>
<th>Gene Quant.</th>
<th>Fluidigm CN</th>
<th>Chip CN</th>
<th>Fluidigm Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>62090</td>
<td>90M0526</td>
<td>1</td>
<td>0</td>
<td>ATBP1</td>
<td>473</td>
<td>TERT</td>
<td>357</td>
<td>473</td>
<td>357</td>
<td>0.49</td>
<td>1</td>
<td>Loss</td>
<td>Het. Del.</td>
</tr>
<tr>
<td>62135</td>
<td>93M0784</td>
<td>1</td>
<td>1</td>
<td>CDH2</td>
<td>509</td>
<td>TERT</td>
<td>507</td>
<td>639</td>
<td>377</td>
<td>1.5</td>
<td>3</td>
<td>Gain</td>
<td>Hom. Dup.</td>
</tr>
<tr>
<td>62329</td>
<td>92M0524</td>
<td>1</td>
<td>1</td>
<td>DGV_9478</td>
<td>592</td>
<td>TERT</td>
<td>421</td>
<td>672</td>
<td>341</td>
<td>1.5</td>
<td>3</td>
<td>Gain</td>
<td>Het. Dup.</td>
</tr>
<tr>
<td>62493</td>
<td>05AD7725</td>
<td>1</td>
<td>0</td>
<td>ERMP1</td>
<td>393</td>
<td>TERT</td>
<td>299</td>
<td>394</td>
<td>298</td>
<td>0.51</td>
<td>1</td>
<td>Loss</td>
<td>Het. Del.</td>
</tr>
<tr>
<td>62613</td>
<td>95M2194</td>
<td>1</td>
<td>0</td>
<td>EVC2</td>
<td>638</td>
<td>TERT</td>
<td>544</td>
<td>726</td>
<td>456</td>
<td>1.4</td>
<td>3</td>
<td>Gain</td>
<td>Het. Dup.</td>
</tr>
<tr>
<td>62855</td>
<td>04AD7114</td>
<td>1</td>
<td>0</td>
<td>Intergenic</td>
<td>498</td>
<td>TERT</td>
<td>517</td>
<td>672</td>
<td>343</td>
<td>0.94</td>
<td>1</td>
<td>Loss</td>
<td>Diploid</td>
</tr>
<tr>
<td>62863</td>
<td>04AD6981</td>
<td>1</td>
<td>1</td>
<td>CLDND1</td>
<td>553</td>
<td>TERT</td>
<td>446</td>
<td>665</td>
<td>334</td>
<td>1.44</td>
<td>3</td>
<td>Gain</td>
<td>Het. Dup.</td>
</tr>
<tr>
<td>62863</td>
<td>04AD6981</td>
<td>1</td>
<td>1</td>
<td>EPHA6</td>
<td>662</td>
<td>TERT</td>
<td>511</td>
<td>671</td>
<td>502</td>
<td>1.01</td>
<td>3</td>
<td>Gain</td>
<td>Diploid</td>
</tr>
<tr>
<td>62863</td>
<td>04AD6981</td>
<td>1</td>
<td>1</td>
<td>FILIP1L</td>
<td>583</td>
<td>TERT</td>
<td>452</td>
<td>650</td>
<td>385</td>
<td>1.1</td>
<td>3</td>
<td>Gain</td>
<td>Diploid</td>
</tr>
<tr>
<td>62309</td>
<td>91M0636</td>
<td>1</td>
<td>1</td>
<td>APP</td>
<td>551</td>
<td>TERT</td>
<td>504</td>
<td>635</td>
<td>420</td>
<td>1.5</td>
<td>3</td>
<td>Gain</td>
<td>Control</td>
</tr>
<tr>
<td>62309</td>
<td>95M2903</td>
<td>1</td>
<td>1</td>
<td>APP</td>
<td>600</td>
<td>TERT</td>
<td>513</td>
<td>682</td>
<td>431</td>
<td>1.02</td>
<td>2</td>
<td>Diploid</td>
<td>Control</td>
</tr>
</tbody>
</table>
Supplementary Table 1: The table shows the results from gene quantitation experiments performed using TaqMan probes and Fluidigm 770 digital array. The digital array runs nano-scale qPCR reactions, and hence runs up-to 770 replicates of every reaction. DNA sample from each test subject were run in multiplex using a ‘Fam’ labeled target gene and a ‘Vic’ labeled house-keeping gene. ‘Rx. Count’ column shows the number of replicate reactions and the ‘Rx. Inters.’ column is the number of reactions where both target and house-keeping (RNAseP and/or TERT) signal were detected. The ‘Gene Quan.’ column shows the ratio of target gene quantified against the diploid control gene. Ratios in the range of ~0.5 indicate a heterozygous deletion, ~1.0 indicates diploid and any ratio >1.5 indicate increase in gene copy number (duplication, triplication etc.).

Column header description: FamID-family ID, IndID-individual ID, Proband-proband from each family, Phen.-AD phenotype (see description below), APOE-No. of copies of APOE-ε4, Fluidigm CN-Copy number inferred from digital quantitation data, Chip CN-Copy number inferred from genome-wide DNA array data, Del. indicates deletion, Dip. indicates diploid, Dup. indicates duplication, Het. Indicates heterozygous and Hom. stands for homozygous.
Supplementary 2: Image Results from FISH Confirmation experiments in NIMH families

1. Family 52106: Testing for Gain

1a. Proband: ECNV05-90C00092

Probes: RP11-17D23R/RP11-71J24G
RP11-479F13R/RP11-71J24G

1b. Unaffected subject: ECNV12-90C00694

Probes: RP11-17D23R/RP11-71J24G
RP11-479F13R/RP11-71J24G

Interphase FISH analysis of Chr2: 61356817-61597347 gain CNV in family 52106.

RP11-479F13 and RP11-17D23 5’-ends were labeled with Cy3-dUTP (red) and RP11-71J24 was labeled in FITC-dUTP (green). All subjects show evidence for diploid copy number in the chromosome 2p15 locus.
2. Family 51278: Testing for Loss

Probes: RP11-91N2R/295G24g RP11-91N2R/295G24g

Interphase FISH analysis of Chr9: 2414322-2565408 deletion CNV in family 52106. RP11-91N2 5’-end was labeled with Cy3-dUTP (red) and RP11-295G24 was labeled in FITC-dUTP (green). Both subjects in the family show evidence for deletion in the chromosome 9p24.2 locus.

3a. Proband: ECNV02-90C00045*

![Probes: RP11-479F13R/RP11-71J24G](image1) ![RP11-17D23R/RP11-71J24G](image2)

3b. Unaffected subject: ECNV03-90C00070

![Probes: RP11-479F13R/RP11-71J24G](image3) ![RP11-17D23R/RP11-71J24G](image4)

Interphase FISH analysis of Chr3: 87319617-87650334 loss CNV in family 50152. RP11-479F13 and RP11-17D23 5'-end were labeled with Cy3-dUTP (red) and RP11-71J24 was labeled in FITC-dUTP (green). All affected individuals showed presence for deletion in the 3p11.2 locus, while the unaffected siblings were diploid (panel 3b).*lymphoblast cells from 90C00006 were not available.
4. Family 50354: Testing for Loss

4a. Proband: ECNV07-90C00132

![Images of probes labeled with Cy3 and FITC dUTPs]

Probes: RP11-31F19R /295G24G
RP11-130C19G
RP11-143M15G /295G24G

4b. Unaffected subject: ECNV09-90C00385

![Images of probes labeled with Cy3 and FITC dUTPs]

Probes: RP11-31F19R /295G24G
RP11-130C19G
RP11-143M15G /295G24G

Interphase FISH analysis of Chr9: 587476-992280 gain CNV in family 50354.

RP11-31F19, RP11-130C19 and RP11-143M15 5’-end were labeled with Cy3-dUTP (red) and RP11-295G24 was labeled in FITC-dUTP (green). The deletion identified in the affected individuals chromosome 9p24.3 locus was confirmed to be present in the affected individuals.
5. Family 50985: Testing for Gain

Probes: RP11-482L11R/484D2G RP11-482L11R/484D2G

Interphase FISH analysis of Chr11: 84706668-84834686 gain CNV in family 50985.

RP11- 482L11 5’-end was labeled with Cy3-dUTP (red) and RP11-484D2 was labeled in FITC-dUTP (green). All subjects show evidence for diploid copy number in chromosome 11q14.1 locus.
6. Family 50996: Testing for Loss

Interphase FISH analysis of Chr12: 72595802-72710176 gain CNV in family 50996. RP11-454P3 5’-end was labeled with Cy3-dUTP (red) and RP11-166G2 was labeled in FITC-dUTP (green). All subjects show evidence for diploid copy number in chromosome 12q21.1 locus.
7. Family 50368: Testing for Gain

Interphase FISH analysis of Chr14: 99818376-99980583 gain CNV in family 50368.

RP11-362L22 5’-end was labeled with Cy3-dUTP (red) and RP11-436G5 was labeled in FITC-dUTP (green). All subjects show evidence for diploid copy number in this chromosome 14q32.2 locus.
8. Family 51146: Testing for Gain

Probes: RP11-543A18r/RP11-432A8g RP11-543A18r/RP11-432A8g

Interphase FISH analysis of Chr3: 65050258-65160889 gain CNV in family 51146.

RP11-543A18 5′-end was labeled with Cy3-dUTP (red) and RP11-432A8 was labeled in FITC-dUTP (green). All subjects show evidence for diploid copy number in chromosome 3p14.1 locus.

Interphase FISH analysis of Chr4: 73963661-74282528 gain CNV in family 51146.

RP11-433K16 5′-end was labeled with Cy3-dUTP (red) and RP11-326O23 was labeled in FITC-dUTP (green). All subjects show evidence for diploid copy number in chromosome 4 q13.3 locus.
10. Family 52256: Testing for Gain

Interphase FISH analysis of Chr4: 154349754-154481749 gain CNV in family 52256. RP11-285C1 5′-end was labeled with Cy3-dUTP (red) and RP11-326O23 was labeled in FITC-dUTP (green). All subjects show evidence for diploid copy number in chromosome 4 q31.3 locus.
11. Family 51192: Testing for Gain

11.a Unaffected subject: ECNV20-90C02053*

11.b Proband: ECNV28-90C03539

Probes: RP5-995C14R/RP11-314C16G

RP5-995C14/RP11-314C16G

Interphase FISH analysis of Chr6: 78423561-79081352 gain CNV in family 51192.

RP5-995C14 5'-end was labeled with Cy3-dUTP (red) and RP11-314C16 was labeled in FITC-dUTP (green). All subjects show evidence for diploid copy number in chromosome 6q14.1 locus.*lymphoblast cells from 90C02341 were not available.
12. Family 50722: Testing for Gain

12a. Proband: ECNV31-90C03584
12b. Proband: ECNV29-90C03580

Probes: RP11-420B22R/RP11-532M24G
RP11-420B22R/RP11-532M24G

Interphase FISH analysis of Chr8: 18793400-19041040 gain CNV in family 51192.

RP5-995C14 5’-end was labeled with Cy3-dUTP (red) and RP11-314C16 was labeled in FITC-dUTP (green). All subjects show evidence for diploid copy number in chromosome 8p22 locus.
VITA

<table>
<thead>
<tr>
<th>Year</th>
<th>Degree</th>
<th>Field</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>B.S.</td>
<td>Chemical Engineering</td>
<td>Bangalore University, India</td>
</tr>
<tr>
<td>2002</td>
<td>M.S.</td>
<td>Information Systems</td>
<td>Drexel University</td>
</tr>
<tr>
<td>2005</td>
<td>M.S.</td>
<td>Biology</td>
<td>Drexel University</td>
</tr>
<tr>
<td>2011</td>
<td>Ph.D.</td>
<td>Biology</td>
<td>Drexel University, thesis work at Massachusetts General Hospital</td>
</tr>
</tbody>
</table>
