Students Using Visual Thinking to Learn Science

in a Web-based Environment

A Thesis

Submitted to the Faculty

of

Drexel University

by

Jean Margaret Plough

In partial fulfillment of the

Requirements for the degree

of

Doctor of Philosophy

May 2004
Dedications

for my parents
Acknowledgements

Dr. Elizabeth L. Haslam, Dr. Sheila Rao Vaidya, Dr. Marion Dugan, Dr. David Emmons, Dr. Peter Kinney, Dr. Wesley Shumar, Dr. Eva Thury, Dr. Craig Bach, Ms. Tina Hallquist, Ms. Tasha Russell, Dr. James Ayer, & Dr. Adrienne Jacoby
Table of Contents

List of Tables .. viii
List of Figures .. ix
Abstract .. x

1. Introduction ... 1
 Background of the Problem .. 4
 Science Learning ... 4
 Constructivism ... 7
 Problem Solving .. 8
 Hyperlinked Web-Based Environment .. 9
 Visual Thinking ... 10
 Significance of the Study .. 13
 Purpose of the Study ... 14
 Research Questions ... 15
 Definition of Terms .. 16
 Delimitations ... 18
 Limitations ... 19
 Summary .. 19

2. Literature Review ... 21
 Visual Thinking ... 21
 West’s theory ... 21
 Studies on Visual Thinking .. 22
 Value of Visual Thinking .. 26
Current Trends in Learning in a Web-based Environment 28
Ethnography ... 40
Visual Ethnography ... 44

3. Methods .. 49
Overall Approach and Rationale .. 49
Site Selection ... 52
Student sample .. 55
Data Collection .. 56
Field notes ... 57
Role of the researcher – the participant observer 59
Visual learning logs .. 61
Student web pages ... 64
Assessment .. 65
Videotaped informal group interviews 68
Data Recording ... 70
Data Analysis .. 70
Triangulation .. 72
Trustworthiness .. 74
Political and Ethical Issues ... 75

4. Results .. 77
Site Setting ... 77
How does making visual representations help students elaborate on science knowledge? Visual Learning Logs 82
Producer ... 83
List of Tables

1. Comparison of Hyperlinked Web-based Environment and Visual Thinking ...10
2. Research Questions, Methods, & Analysis..57
3. Page Making and Linking Sequence..93
4. Problem Solving (Bruner,1966),(Schacter et al,1997).........................118
5. Views of Knowledge...171
6. Video Time Coding..172
7. Grade 4 – Science..174
List of Figures

1. Trends in Average Scale Scores .. 5
2. Visual Learning Log - Herbivore ... 62
3. Science and Technology Standards-Based Rubric 67
4. Mike’s Visual Learning Log - Groups of Living Things, Mammals ... 82
5. Science Structure Format .. 91
6. Science Structure, Judy ... 95
7. Science Structure, Blanca ... 97
8. Science Structure, Marquis .. 100
9. Science Structure, Nakia ... 101
10. Science Structure, Russell .. 104
11. Science Structure, John ... 106
12. Connection Concept Map .. 110
13. Rubric Scores .. 113
14. Mean according to Standard ... 114
15. Mean according to Student .. 116
17. Problem Solving, grade 4, TIMSS Performance Assessment, 1995... 164
18. Constant Comparison Method .. 173
19. Dual Coding Theory ... 177
Abstract

Students Using Visual Thinking to Learn Science in a Web-based Environment
Jean Margaret Plough
Elizabeth L. Haslam, Ph.D.

United States students’ science test scores are low, especially in problem solving, and traditional science instruction could be improved. Consequently, visual thinking, constructing science structures, and problem solving in a web-based environment may be valuable strategies for improving science learning. This ethnographic study examined the science learning of fifteen fourth grade students in an after school computer club involving diverse students at an inner city school. The investigation was done from the perspective of the students, and it described the processes of visual thinking, web page construction, and problem solving in a web-based environment.

The study utilized informal group interviews, field notes, Visual Learning Logs, and student web pages, and incorporated a Standards-Based Rubric which evaluated students’ performance on eight science and technology standards. The Visual Learning Logs were drawings done on the computer to represent science concepts related to the Food Chain. Students used the internet to search for information on a plant or animal of their choice. Next, students used this internet information, with the information from their Visual Learning Logs, to make web pages on their plant or animal. Later, students linked their web pages to form Science Structures. Finally, students linked their Science Structures with the structures of
other students, and used these linked structures as models for solving problems.
Further, during informal group interviews, students answered questions about visual thinking, problem solving, and science concepts.

The results of this study showed clearly that 1) making visual representations helped students understand science knowledge, 2) making links between web pages helped students construct Science Knowledge Structures, and 3) students themselves said that visual thinking helped them learn science. In addition, this study found that when using Visual Learning Logs, the main overall ideas of the science concepts were usually represented accurately. Further, looking for information on the internet may cause new problems in learning. Likewise, being absent, starting late, and/or dropping out all may negatively influence students’ proficiency on the standards. Finally, the way Science Structures are constructed and linked may provide insights into the way individual students think and process information.