INTRODUCTION

As a permit requirement for the development of a marina within Absecon Inlet, Atlantic City, NJ, tidal current measurements were required. Maximum ebb and flood currents determine the forces to which the structural elements of the marina will be subjected as well as sediment transport patterns near the marina. Currents also influence the maneuverability of small craft attempting to enter or exit the marina. Consequently, current velocities and directions during maximum ebb and flood tides (spring tides) were measured on 10 March 2005 in the

1 Samuel S. Baxter Professor, Department of Civil, Architectural & Environmental Engineering, Drexel University, Philadelphia, PA 19104.
2 Surveyor, Hatch Mott McDonald, 833 Route 9 North, Cape May Court House, NJ 08210.
3 Principal, Lomax-Morey Consulting, 1435 Route 9 North, Cape May Court House, NJ 08210.
4 Engineer, Hatch Mott McDonald, 833 Route 9 North, Cape May Court House, NJ 08210.
vicinity of the proposed marina using the Global Positioning System (GPS). The location of the proposed marina in the inlet is shown in Figure 1. Current patterns are affected by the presence of Clam Creek (on southwest side of the study area) and the Route 87 Bridge over the inlet. The marina site is also subject to locally generated wind waves as well as waves entering the inlet from the Atlantic Ocean.

GENERAL MEASUREMENT SCHEME

In the past, current measurements have often been made by tracking drogues moving on the surface of a water body. The drogues move with the surface current provided that their sub-aerial area is small and not affected by wind. Wind effects can be minimized by keeping most of the drogue beneath the water surface. For example, two-foot square pieces of 3/8-inch plywood with a small vertical flag of surveyor’s tape have been used. Plastic, gallon milk jugs, ballasted with sand and outfitted with a flag also have been used (Weggel, et al., 1987 and Escajadillo, 1993). Since the current’s vertical velocity distribution is generally logarithmic, the surface velocity is the maximum and can serve as a measure of the velocity distribution if the bottom roughness is known. Drogue position can be measured using two transits on shore spaced a known distance apart and simultaneously turning angles to a visible flag mounted on the drogue. Subsequent position measurements to the same drogue permit the velocity to be calculated if the time of each observation is known. Multiple drogues can be deployed and tracked to
To determine current patterns. The drogues are usually deployed from a boat.

Rather than use standard surveying instruments to track the drogue, a drogue equipped with a GPS receiver was constructed for the present study. The drogue was constructed of two standard 5-gallon fisherman’s buckets, one inside the other. The outer bucket served as a container for lead shot ballast. The inner bucket held the GPS receiver. A water-tight cover was provided to protect the receiver. The GPS receiver’s antenna penetrated the water-tight cover. Data was recorded on a data logger inside of the bucket. Figure 2 shows the drogue with the cover off. Figure 3 shows the sealed drogue ready for deployment.

The drogue was deployed from a small boat operating in the inlet (Figure 4). During the current measurements, the drogue was tethered to the boat by a slack line to insure it would not be lost. The tether was to be slack at all times during the measurement phase. Nine deployments of the drogue were made during a 2-hour and 19-minute period surrounding maximum ebb tidal currents (about 11:30 AM) and six deployments were made during a 1-hour and 53 minute period surrounding maximum flood tidal currents (about 5:00 PM). The starting point for each deployment was varied to provide flood and ebb current patterns within and just outside of the boundaries of the proposed marina. The starting points were based on estimates of the expected
path of the drogue based on Absecon Inlet’s geometry. The resulting path lines are shown in Figures 5 and 6.

GLOBAL POSITIONING SYSTEM AND DATA COLLECTION
A Leica System 5000 Dual Frequency GPS receiver System 500 rover operating from a fixed base station was utilized. Real Time Kinematic (RTK) mode solutions were updated every 0.2 seconds and coordinates were collected at 3-second intervals. No position used for this study had more than 0.54 feet reported horizontal error, and the average of all errors was 0.06 feet for the ebb tide and 0.08 feet for the flood tide.

The data logger was checked after each range line to insure the lock from the base and all available satellites were maintained. This required the cover of the drogue to be removed, a laborious task since the cover was held in place by 12 bolts. A quick cover removal system would have simplified this operation.

DATA REDUCTION
The raw data were the drogue’s position on the NJ State Plane Coordinate System (northing and easting) and the time. These data were analyzed using a spreadsheet. The position at the mid-point of the readings was calculated and the velocity determined for the 3-second interval. Based on the position data, the cumulative distance moved by the drogue from its starting point was also calculated. Because of the high density of velocity values and the inherent error in each velocity calculated, velocity values were averaged over a travel distance of
approximately 50 feet. These average values were used in the permit application for the marina.

An example record of the calculated velocities, 3 seconds apart, is shown in Figure 7 for Flood Drogue #1. One cause of the velocity fluctuations shown on the figure is believed to be incident waves with periods of the same order of magnitude as the 3 second GPS position sampling rate. The velocity is either increased or decreased by the orbital velocity of the waves. If the GPS sampling rate is commensurate with the wave period, the waves induce a bias in the current velocity. This is unlikely; rather, the wave-induced velocity will appear as an oscillation about the mean velocity because of the variability in wave periods. (No wave measurements were made in the present study; however, the photograph in Figure 4 shows some small waves present in the inlet.) Figure 7 also shows a 19-point moving average (57-second average) of the individual velocities. Obviously, the individual velocity measurements are quite variable because of waves and the limited accuracy with which the drogue’s exact position is determined. Other errors arise because of the drogue’s inertia (it does not respond quickly to changes in velocity) and the drag imposed by the tether.

Figure 8 is an analysis of the difference of the individual velocities from the 57-second moving average values, i.e., the residuals. The residuals were ranked and assigned a probability using the Weibull formula (Maidment, 1991),
\[P(X \leq x) = \frac{r}{N + 1} \]

in which \(P(X \leq x) \) is the probability that the value will be not be exceeded, \(r \) is the rank \((r = 1 \text{ for the smallest value})\), and \(N \) is the number of values. The probabilities, \(P(X \leq x) \), are transformed by taking the standard normal inverse and plotted on a linear scale. This is equivalent to plotting the data on normal probability paper. Thus the values on the abscissa are standard deviations above and below the zero mean. (For example, +1 standard deviation is approximately equivalent to the 84\(^{th}\) percentile and -1 standard deviation is equivalent to the 16\(^{th}\) percentile.) For Flood Drogue #1, the standard deviation of the individual velocity readings is 0.075 knots or 68\% \((84\% - 16\%)\) of the individual velocity readings are within \(\pm 0.075 \) knots. This represents about a 10\% error for the lowest velocities measured by this drogue.

The \(r^2 \) value is a measure of how well the errors are approximated by a normal distribution. The standard deviation is a measure of the errors due to waves and in determining the drogue’s position and thus of the individual velocity calculations. These values for the other drogue deployments are given in Tables 1 and 2. The poorer correlations (lower \(r^2 \) values) indicated for the ebb current measurements in Table 2 may be attributed to inexperience leading to occasional pulls on the tether. (The ebb current measurements were the first conducted.)
ADVANTAGES OF GPS SYSTEM

The obvious advantage of the GPS system is automated data collection and the frequency with which individual drogue position data can be obtained. The data is obtained in digital form and is easily analyzed to obtain local current velocity. Because of the spatial density of the velocity data, current accelerations can be calculated. The acceleration is simply the slope of the 19-point moving average velocity such as shown on Figure 7.

A skipper and a surveyor to operate the GPS system and deploy the drogue are needed on board the boat. An additional person on shore is needed to keep the base station receiver secure. (For the present study, three people were on the boat and one on shore.) For the traditional 2-transit drogue tracking method, a minimum of 4 people are needed: two on board the boat and two transit operators all of whom need to be in communication to insure the simultaneous recording of data.

DISADVANTAGES OF GPS SYSTEM

One disadvantage of the GPS system is that it puts expensive equipment at risk of loss or damage. This leads to the prudent use of a tether to insure that the equipment is not lost. However, the tether, if not watched to insure that it is always slack, can lead to errors in velocity determination. Also, unless the data is periodically checked during the collection process, its quality may not be known until after the field test
is over. The quantity of data can be overwhelming which is why spatial averages over approximately 50 feet of displacement were made in the final analysis for use in the permit application. The relatively large mass of the drogue needed to house the GPS receiver makes it less responsive to changes in current velocity; thus, where accelerations occur (including when changes in current direction occur) the inertia of the drogue slows its response and introduces errors into the measurements.

REFERENCES

Table 1 Deviation from Mean – Flood Current Measurements

<table>
<thead>
<tr>
<th>Drogue No.</th>
<th>Standard Deviation of (\frac{(V-V_{\text{mean}})}{V_{\text{mean}}}) (dimensionless)</th>
<th>(r^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0749</td>
<td>0.9833</td>
</tr>
<tr>
<td>2</td>
<td>0.0496</td>
<td>0.9949</td>
</tr>
<tr>
<td>3</td>
<td>0.0716</td>
<td>0.9793</td>
</tr>
<tr>
<td>4</td>
<td>0.0395</td>
<td>0.9947</td>
</tr>
<tr>
<td>5</td>
<td>0.0423</td>
<td>0.9951</td>
</tr>
<tr>
<td>6</td>
<td>0.0423</td>
<td>0.9945</td>
</tr>
</tbody>
</table>

Table 2 Deviation from Mean – Ebb Current Measurements

<table>
<thead>
<tr>
<th>Drogue No.</th>
<th>Standard Deviation of (\frac{(V-V_{\text{mean}})}{V_{\text{mean}}}) (dimensionless)</th>
<th>(r^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0474</td>
<td>0.9767</td>
</tr>
<tr>
<td>2</td>
<td>0.0519</td>
<td>0.7610</td>
</tr>
<tr>
<td>3</td>
<td>0.0422</td>
<td>0.9859</td>
</tr>
<tr>
<td>4</td>
<td>0.0401</td>
<td>0.8338</td>
</tr>
<tr>
<td>5</td>
<td>0.1673</td>
<td>0.9929</td>
</tr>
<tr>
<td>6</td>
<td>0.0464</td>
<td>0.8987</td>
</tr>
<tr>
<td>7</td>
<td>0.0637</td>
<td>0.8312</td>
</tr>
<tr>
<td>8</td>
<td>0.0487</td>
<td>0.9717</td>
</tr>
<tr>
<td>9</td>
<td>0.0437</td>
<td>0.9893</td>
</tr>
</tbody>
</table>
INTRODUCTION

As a permit requirement for the development of a marina within Absecon Inlet, Atlantic City, NJ, tidal current measurements were required. Maximum ebb and flood currents determine the forces to which the structural elements of the marina will be subjected as well as sediment transport patterns near the marina. Currents also influence the maneuverability of small craft attempting to enter or exit the marina. Consequently, current velocities and directions during maximum ebb and flood tides (spring tides) were measured on 10 March 2005 in the

5 Samuel S. Baxter Professor, Department of Civil, Architectural & Environmental Engineering, Drexel University, Philadelphia, PA 19104.
6 Surveyor, Hatch Mott McDonald, 833 Route 9 North, Cape May Court House, NJ 08210.
7 Principal, Lomax-Morey Consulting, 1435 Route 9 North, Cape May Court House, NJ 08210.
8 Engineer, Hatch Mott McDonald, 833 Route 9 North, Cape May Court House, NJ 08210.
vicinity of the proposed marina using the Global Positioning System (GPS). The location of the proposed marina in the inlet is shown in Figure 1. Current patterns are affected by the presence of Clam Creek (on southwest side of the study area) and the Route 87 Bridge over the inlet. The marina site is also subject to locally generated wind waves as well as waves entering the inlet from the Atlantic Ocean.

GENERAL MEASUREMENT SCHEME

In the past, current measurements have often been made by tracking drogues moving on the surface of a water body. The drogues move with the surface current provided that their sub-aerial area is small and not affected by wind. Wind effects can be minimized by keeping most of the drogue beneath the water surface. For example, two-foot square pieces of 3/8-inch plywood with a small vertical flag of surveyor’s tape have been used. Plastic, gallon milk jugs, ballasted with sand and outfitted with a flag also have been used (Weggel, et al., 1987 and Escajadillo, 1993). Since the current’s vertical velocity distribution is generally logarithmic, the surface velocity is the maximum and can serve as a measure of the velocity distribution if the bottom roughness is known. Drogue position can be measured using two transits on shore spaced a known distance apart and simultaneously turning angles to a visible flag mounted on the drogue. Subsequent position measurements to the same drogue permit the velocity to be calculated if the time of each observation is known. Multiple drogues can be deployed and tracked to
determine current patterns. The drogues are usually deployed from a boat.

Rather than use standard surveying instruments to track the drogue, a drogue equipped with a GPS receiver was constructed for the present study. The drogue was constructed of two standard 5-gallon fisherman’s buckets, one inside the other. The outer bucket served as a container for lead shot ballast. The inner bucket held the GPS receiver. A water-tight cover was provided to protect the receiver. The GPS receiver’s antenna penetrated the water-tight cover. Data was recorded on a data logger inside of the bucket. Figure 2 shows the drogue with the cover off. Figure 3 shows the sealed drogue ready for deployment.

The drogue was deployed from a small boat operating in the inlet (Figure 4). During the current measurements, the drogue was tethered to the boat by a slack line to insure it would not be lost. The tether was to be slack at all times during the measurement phase. Nine deployments of the drogue were made during a 2-hour and 19-minute period surrounding maximum ebb tidal currents (about 11:30 AM) and six deployments were made during a 1-hour and 53 minute period surrounding maximum flood tidal currents (about 5:00 PM). The starting point for each deployment was varied to provide flood and ebb current patterns within and just outside of the boundaries of the proposed marina. The starting points were based on estimates of the expected
path of the drogue based on Absecon Inlet’s geometry. The resulting path lines are shown in Figures 5 and 6.

GLOBAL POSITIONING SYSTEM AND DATA COLLECTION

A Leica System 5000 Dual Frequency GPS receiver System 500 rover operating from a fixed base station was utilized. Real Time Kinematic (RTK) mode solutions were updated every 0.2 seconds and coordinates were collected at 3-second intervals. No position used for this study had more than 0.54 feet reported horizontal error, and the average of all errors was 0.06 feet for the ebb tide and 0.08 feet for the flood tide.

The data logger was checked after each range line to insure the lock from the base and all available satellites were maintained. This required the cover of the drogue to be removed, a laborious task since the cover was held in place by 12 bolts. A quick cover removal system would have simplified this operation.

DATA REDUCTION

The raw data were the drogue’s position on the NJ State Plane Coordinate System (northing and easting) and the time. These data were analyzed using a spreadsheet. The position at the mid-point of the readings was calculated and the velocity determined for the 3-second interval. Based on the position data, the cumulative distance moved by the drogue from its starting point was also calculated. Because of the high density of velocity values and the inherent error in each velocity calculated, velocity values were averaged over a travel distance of
approximately 50 feet. These average values were used in the permit application for the marina.

An example record of the calculated velocities, 3 seconds apart, is shown in Figure 7 for Flood Drogue #1. One cause of the velocity fluctuations shown on the figure is believed to be incident waves with periods of the same order of magnitude as the 3 second GPS position sampling rate. The velocity is either increased or decreased by the orbital velocity of the waves. If the GPS sampling rate is commensurate with the wave period, the waves induce a bias in the current velocity. This is unlikely; rather, the wave-induced velocity will appear as an oscillation about the mean velocity because of the variability in wave periods. (No wave measurements were made in the present study; however, the photograph in Figure 4 shows some small waves present in the inlet.) Figure 7 also shows a 19-point moving average (57-second average) of the individual velocities. Obviously, the individual velocity measurements are quite variable because of waves and the limited accuracy with which the drogue’s exact position is determined. Other errors arise because of the drogue’s inertia (it does not respond quickly to changes in velocity) and the drag imposed by the tether.

Figure 8 is an analysis of the difference of the individual velocities from the 57-second moving average values, i.e., the residuals. The residuals were ranked and assigned a probability using the Weibull formula (Maidment, 1991),
\[P(X \leq x) = \frac{r}{N+1} \]

in which \(P(X \leq x) \) is the probability that the value will be not be exceeded, \(r \) is the rank (\(r = 1 \) for the smallest value), and \(N \) is the number of values. The probabilities, \(P(X \leq x) \), are transformed by taking the standard normal inverse and plotted on a linear scale. This is equivalent to plotting the data on normal probability paper. Thus the values on the abscissa are standard deviations above and below the zero mean. (For example, +1 standard deviation is approximately equivalent to the 84th percentile and -1 standard deviation is equivalent to the 16th percentile.) For Flood Drogue #1, the standard deviation of the individual velocity readings is 0.075 knots or 68% (84% - 16%) of the individual velocity readings are within ±0.075 knots. This represents about a 10% error for the lowest velocities measured by this drogue.

The \(r^2 \) value is a measure of how well the errors are approximated by a normal distribution. The standard deviation is a measure of the errors due to waves and in determining the drogue’s position and thus of the individual velocity calculations. These values for the other drogue deployments are given in Tables 1 and 2. The poorer correlations (lower \(r^2 \) values) indicated for the ebb current measurements in Table 2 may be attributed to inexperience leading to occasional pulls on the tether. (The ebb current measurements were the first conducted.)
ADVANTAGES OF GPS SYSTEM

The obvious advantage of the GPS system is automated data collection and the frequency with which individual drogue position data can be obtained. The data is obtained in digital form and is easily analyzed to obtain local current velocity. Because of the spatial density of the velocity data, current accelerations can be calculated. The acceleration is simply the slope of the 19-point moving average velocity such as shown on Figure 7.

A skipper and a surveyor to operate the GPS system and deploy the drogue are needed on board the boat. An additional person on shore is needed to keep the base station receiver secure. (For the present study, three people were on the boat and one on shore.) For the traditional 2-transit drogue tracking method, a minimum of 4 people are needed: two on board the boat and two transit operators all of whom need to be in communication to insure the simultaneous recording of data.

DISADVANTAGES OF GPS SYSTEM

One disadvantage of the GPS system is that it puts expensive equipment at risk of loss or damage. This leads to the prudent use of a tether to insure that the equipment is not lost. However, the tether, if not watched to insure that it is always slack, can lead to errors in velocity determination. Also, unless the data is periodically checked during the collection process, its quality may not be known until after the field test
is over. The quantity of data can be overwhelming which is why spatial averages over approximately 50 feet of displacement were made in the final analysis for use in the permit application. The relatively large mass of the drogue needed to house the GPS receiver makes it less responsive to changes in current velocity; thus, where accelerations occur (including when changes in current direction occur) the inertia of the drogue slows its response and introduces errors into the measurements.

REFERENCES

Figure 1 Absecon Inlet, Atlantic City, NJ, Location of Proposed Marina and Tidal Current Study (USGS, Atlantic City Quadrangle)
Figure 2 Drogue with Cover Off Aboard Boat
Figure 3 Drogue
Figure 4 Deployed Drogue with Slack Tether to Boat
Figure 5 Path Lines during Maximum Ebb Currents, Absecon Inlet, 10 March 2005 (NJ State Plane Coordinate System)
Figure 6 Path Lines during Maximum Flood Currents, Absecon Inlet, 10 March 2005 (NJ State Plane Coordinate System)
Figure 7 Calculated Velocities at 3-Second Intervals as a Function of Cumulative Distance Traveled, Flood Drogue #1.
Figure 8 Statistics of the Difference between Individual Velocity Values from the 57-Second Moving Average Value, Flood Drogue #1.