The following item is made available as a courtesy to scholars by the author(s) and Drexel University Library and may contain materials and content, including computer code and tags, artwork, text, graphics, images, and illustrations (Material) which may be protected by copyright law. Unless otherwise noted, the Material is made available for non profit and educational purposes, such as research, teaching and private study. For these limited purposes, you may reproduce (print, download or make copies) the Material without prior permission. All copies must include any copyright notice originally included with the Material. You must seek permission from the authors or copyright owners for all uses that are not allowed by fair use and other provisions of the U.S. Copyright Law. The responsibility for making an independent legal assessment and securing any necessary permission rests with persons desiring to reproduce or use the Material.

Please direct questions to archives@drexel.edu
Magnet therapy
Extraordinary claims, but no proved benefits

Magnetic devices that are claimed to be therapeutic include magnetic bracelets, insoles, wrist and knee bands, back and neck braces, and even pillows and mattresses. Their annual sales are estimated at $300m (£171m; €252m) in the United States and more than a billion dollars globally. They have been advertised to cure a vast array of ills, particularly pain. A Google search for the terms “magnetic + healing” omitting “MRI resonance” yielded well over 20 000 pages, most of which tout healing by magnets. The reader is invited to insert “magnetic healing” into a web browser, and evaluate these spectacular claims.

Many “controlled” experiments are suspect because it is difficult to blind subjects to the presence of a magnet. An example is a randomised trial of powerful magnetic bracelets for the relief of hip and knee osteoarthritis, which reports a significant decrease in pain because of the bracelets. The patients given real magnets could detect them because the magnets often stuck to keys in pockets. Perhaps subjects with magnetic bracelets subconsciously detected a tiny drag when the bracelets were near ferromagnetic surfaces (which are ubiquitous in modern life), and this distracted or otherwise influenced the perceived pain. Patients with fibromyalgia detected which sleeping pads were magnetic by their mechanical properties, by “comfort with the firmness” and thus unblinded the study. In a sophisticated postural assay, where magnetic soles were found to decrease swaying, the authors admit that the magnetic soles could have differed in stiffness from the controls. One of us suggested to a believer in magnetic healing that inexpensive refrigerator magnets were thin enough to be worn in dress shoes and would be equally “effective”: she was delighted to find this was so (E Alvarez, private communication). We wonder if a cheap shoe insert would have had the same effect. In a recent study of magnetic shoes, the authors admitted that the magnetic soles apparently small since published research, both theoretical and experimental, is weighted heavily against any therapeutic benefit. Patients should be advised that magnet therapy has no proved benefits. If they insist on using a magnetic device they could be advised to buy the cheapest—this will at least alleviate the pain in their wallet.

Leonard Finegold professor
(E@drexel.edu)
Department of Physics, Drexel University, Philadelphia, PA 19104, USA

Bruce I Flamm clinical professor of obstetrics and gynaecology
Kaiser Permanente Medical Center, Riverside, CA 92505, USA

Competing interests: None declared.

1 BMJ 2006;332:7-9 January 2006 bmj.com

4 BMJ VOLUME 332 7 JANUARY 2006