Drexel University Home Pagewww.drexel.edu DREXEL UNIVERSITY LIBRARIES HOMEPAGE >>
iDEA DREXEL ARCHIVES >>

iDEA: Drexel E-repository and Archives > Drexel Theses and Dissertations > Drexel Theses and Dissertations > Tribology of MAX phases and their composites

Please use this identifier to cite or link to this item: http://hdl.handle.net/1860/875

Title: Tribology of MAX phases and their composites
Authors: Gupta, Surojit
Keywords: Materials science;Ceramics;Tribology
Issue Date: 27-Jul-2006
Abstract: Currently there is a need for triboactive materials for high-speed turbomachinery applications in industry, which possess: (a) adequate mechanical strength, both at room and elevated temperatures and, (b) low wear rates, WRs, and low friction coefficients, μ, over a wide temperature range. If such materials can be found, the impact would be huge since they would result in increased efficiencies and reduced pollution. This is an outstanding problem that many in industry have been trying to solve for the past 20 years. In this work, the tribological behavior of the MAX phases, and their composites with Ag have been studied for foil-bearing application. Initially, the tribological behavior - at 26 oC and 550 oC – of the following layered ternary carbides: Ti2AlC, Cr2AlC, Ta2AlC, Ti3SiC2, Ti2AlN, Ti4AlN3, Cr2GeC, Cr2GaC, Nb2SnC and Ti2SnC, tested against Ni-based superalloys (Inc718 and Inc600) and alumina, Al2O3, were studied. The high temperature tribo-properties were acceptable and in some cases, exceptional; but at room temperatures, the WRs were too high. Since the addition of Ag is known to improve the tribological behavior at room temperature, it was used to liquid-phase sinter Ta2AlC or Cr2AlC composites. They were tested against a Ni-based superalloy (In718) and alumina. For foil-bearing applications, Ni-based superalloys are the best of choice for the foils. The tribocouples were tested for the most part using a force of 3N at 1 m/s at 25°C, 350 oC and 550 oC for at least 1 km of dry sliding. Over the entire temperature range, the WRs were ≤ 10-4 mm3/N-m and μ ≤ 0.5. Essentially similar results were obtained when the temperature was cycled between ambient and 550 °C. Finally, hot isostatically pressed Ta2AlC/Ag and Cr2AlC/Ag cylinders were machined was successfully tested in a foil-bearing rig test for 10,000 and 3,000 stop-start cycles, respectively. When processed in the presence of liquid Ag, Al from the basal planes of the MAX phases reacts with the Ag to form Ag2Al. This grain boundary phase prevents the formation of abrasive third bodies. As a result, the WRs of the MAX/Ag pins were reduced by ≈ 3 orders of magnitude as compared to the pure MAX phases. During testing at 550 oC and under thermal cycling conditions, the MAX/Ag lubricating tribooxides, comprised mainly of the elements of the Inc718 (Ni, Fe, Cr) and Al from the MAX phases, were formed. The presence of these layers is responsible for the low WRs of MAX/Ag composites WR (≤ 10-5 mm3/N-m), and relatively high WR (~ 10-4 mm3/N-m) of the Inc718, accompanied by μ’s of ~ 0.5. The films formed after rig testing were essentially the same as those obtained in the pin-on-disk experiments. As important, the lab-scale results obtained with the tribometer correlated well with pilot testing of the samples under stringent rig-testing conditions.
URI: http://hdl.handle.net/1860/875
Appears in Collections:Drexel Theses and Dissertations

Files in This Item:

File Description SizeFormat
Gupta_Surojit.pdf7.67 MBAdobe PDFView/Open
View Statistics

Items in iDEA are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! iDEA Software Copyright © 2002-2010  Duraspace - Feedback