Drexel University Home Pagewww.drexel.edu DREXEL UNIVERSITY LIBRARIES HOMEPAGE >>
iDEA DREXEL ARCHIVES >>

iDEA: Drexel E-repository and Archives > Drexel Theses and Dissertations > Drexel Theses and Dissertations > Identifying the complete space of feasible anisotropic properties in polycrystalline microstructures

Please use this identifier to cite or link to this item: http://hdl.handle.net/1860/463

Title: Identifying the complete space of feasible anisotropic properties in polycrystalline microstructures
Authors: Proust, Gwenaelle
Keywords: Chemical engineering;Polycrystals;Microstructure
Issue Date: 11-May-2005
Abstract: Current engineering design focuses mainly on the geometrical optimization of a component, while the material selection is often limited to picking a material based on a set of properties reported in handbooks. The inherent anisotropic behavior of materials is often ignored in the design process, and is usually assumed to be addressed by the safety factor employed. This simple treatment of material selection in the design and optimization process often leads to inefficient design. In this study, we present a rigorous and a comprehensive procedure that facilitates the treatment of material microstructure as a continuous design variable in the elastic-plastic design of structural components made from anisotropic polycrystalline metals. The mechanical behavior of a metal is influenced by several details of its microstructure, including chemical composition, grain size distribution, crystallographic texture, among others. Here, we focus on the crystallographic texture (also called Orientation Distribution Function or ODF) as the main microstructural parameter controlling the anisotropic elastic-plastic properties of interest. The property closures that we have delineated describe the complete set of feasible property combinations for a given polycrystalline material system, while accounting for all possible textures. The property closures are obtained here using a spectral representation of ODF and its relationship with rigorous first order bounds on the effective properties of interest in design. Using the proposed methodology, we successfully developed a few examples of property closures for face centered cubic (fcc) and hexagonal close-packed (hcp) metals. The mechanical anisotropic behavior at the single crystal level for face centered cubic metals has been characterized using the nanoindentation technique along with orientation imaging mapping. This methodology shows promising possibilities to extract fundamental elastic and plastic parameters. However, the methods proposed in the literature to extract data from the load-displacement curves cause discrepancy between the experimental and expected values. The discrepancy could be attributed to the induced plastic deformation among other factors.
URI: http://hdl.handle.net/1860/463
Appears in Collections:Drexel Theses and Dissertations

Files in This Item:

File Description SizeFormat
Proust_Gwenaelle.pdf4.56 MBAdobe PDFView/Open
View Statistics

Items in iDEA are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! iDEA Software Copyright © 2002-2010  Duraspace - Feedback