Drexel University Home Pagewww.drexel.edu DREXEL UNIVERSITY LIBRARIES HOMEPAGE >>
iDEA DREXEL ARCHIVES >>

iDEA: Drexel E-repository and Archives > Drexel Theses and Dissertations > Drexel Theses and Dissertations > Game theoretic models for resource sharing in wireless networks

Please use this identifier to cite or link to this item: http://hdl.handle.net/1860/3801

Title: Game theoretic models for resource sharing in wireless networks
Authors: Malanchini, Ilaria
Keywords: Electrical engineering;Wireless communication systems;Game theory--Computer programs
Issue Date: Dec-2011
Abstract: Wireless communications have been recently characterized by rapid proliferation of wireless networks, impressive growth of standard and technologies, evolution of the end-user terminals, and increasing demand in the wireless spectrum. New, more flexible schemes for the management of the available resources, from both the user and the network side, are necessary in order to improve the efficiency in the usage of the available resources. This work aims at shedding light on the performance modeling of radio resource sharing/allocation situations. Since, in general, the quality of service perceived by a system (e.g., user, network) strictly depends on the behavior of the other entities, and the involved interactions are mainly competitive, this work introduces a framework based on non–cooperative game theoretic tools. Furthermore, non–cooperative game theory is suitable in distributed networks, where control and management are inherently decentralized. First, we consider the case in which many users have to make decisions on which wireless access point to connect to. In this scenario, the quality perceived by the users mainly depends on the number of other users choosing the very same accessing opportunity. In this context, we also consider two–stage games where network make decisions on how to use the available resources, and users react to this selecting the network that maximizes their satisfaction. Then, we refer to the problem of spectrum sharing, where users directly compete for portions of the available spectrum. Finally, we provide a more complex model where the users utility function is based on the Shannon rate. The aim of this second part is to provide a better representation of the satisfaction perceived by the users, i.e., in terms of achievable throughput. Due to the complexity of the game model, we first provide a complete analytical analysis of the two–user case. Then, we extend the model to the N–user case. We mainly analyze this game through simulations. Finally, inspired by the results obtained numerically, we introduce stochastic geometry in the analysis of spectrum games in order to predict the performance of the game in large networks.
Description: Thesis (PhD, Electrical engineering)--Drexel University, 2011.
URI: http://hdl.handle.net/1860/3801
Appears in Collections:Drexel Theses and Dissertations

Files in This Item:

File Description SizeFormat
Malanchini_Ilaria.pdf8.05 MBAdobe PDFView/Open
View Statistics

Items in iDEA are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! iDEA Software Copyright © 2002-2010  Duraspace - Feedback