Drexel University Home Pagewww.drexel.edu DREXEL UNIVERSITY LIBRARIES HOMEPAGE >>
iDEA DREXEL ARCHIVES >>

iDEA: Drexel E-repository and Archives > Drexel University Libraries > Drexel Research Day > A Novel High Resolution, Wide-Field microscopy System for Histology Slide and Fresh Tissue Imaging using Polarized Light

Please use this identifier to cite or link to this item: http://hdl.handle.net/1860/2772

Title: A Novel High Resolution, Wide-Field microscopy System for Histology Slide and Fresh Tissue Imaging using Polarized Light
Authors: Jhaveri, Sankhesh
Keywords: wide-field microscopy;polarised light;optical imaging;digital image correlation
Issue Date: 14-May-2008
Abstract: Knowledge of the complex fiber structures of soft tissues can lead to greater understanding of basic structure-function relationships, and potentially, to improvements in tissue engineered constructs and micro-repair techniques. Unfortunately, imaging these structures in fresh, whole-tissue samples is difficult, mainly because current microscopes are designed for small-scale, narrow field imaging of thin, slide-mounted specimens. These systems depend on high-precision motorized (using expensive servo motors) stage positioning to make a montage of image tiles. However, they are time consuming requiring a large number of image tiles. The goal of this project was to develop a high speed imaging system at low cost-capable of imaging thicker, fresh tissue samples as well as prepared slides using both, normal and polarized light. For imaging thicker specimens, an ‘open stage system’ with variable control on the Z axis, in addition to X and Y axis control, is incorporated to maintain focus. The system uses a low-precision, two stepper motor positioning system, maintaining sub-pixel accuracy via a novel image correlation and registration algorithm. A third stepper motor controlling the fine focus knob enables the Z axis control. The software consists of two basic components: (1) a graphical user interface (GUI) programmed in Visual Basic .NET for camera and stage motor control, and (2) a “tiling/stitching” algorithm programmed in Matlab. The tiling program also incorporates distortion and luminosity correction algorithms. Autofocus is achieved using a novel edge-based focusing algorithm. Current work is ongoing to optimize the throughput, speed and accuracy of large scale 2D and 3D imaging.
URI: http://hdl.handle.net/1860/2772
Appears in Collections:Drexel Research Day

Files in This Item:

File Description SizeFormat
Jhaveri poster.JPG2.44 MBJPEGThumbnail
View/Open
View Statistics

Items in iDEA are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! iDEA Software Copyright © 2002-2010  Duraspace - Feedback