Drexel University Home Pagewww.drexel.edu DREXEL UNIVERSITY LIBRARIES HOMEPAGE >>

iDEA: Drexel E-repository and Archives > Drexel Academic Community > College of Engineering > Department of Chemical and Biological Engineering > Faculty Research and Publications (CBE)  > Effect of membrane microheterogeneity and domain size on fluorescence resonance energy transfer

Please use this identifier to cite or link to this item: http://hdl.handle.net/1860/2025

Title: Effect of membrane microheterogeneity and domain size on fluorescence resonance energy transfer
Authors: Towles, Kevin Bradley
Brown, Angela
Wrenn, Steven P.
Dan, Nily
Issue Date: Jul-2007
Publisher: Biophysical Society
Citation: Biophysical Journal, 93(2): pp. 655-667.
Abstract: Studies of multicomponent membranes suggest lateral inhomogeneity in the form of membrane domains, but the size of small (nanoscale) domains in situ cannot be determined with current techniques. In this article, we present a model that enables extraction of membrane domain size from time-resolved fluorescence resonance energy transfer (FRET) data. We expand upon a classic approach to the infinite phase separation limit and formulate a model that accounts for the presence of disklike domains of finite dimensions within a two-dimensional infinite planar bilayer. The model was tested against off-lattice Monte Carlo calculations of a model membrane in the liquid-disordered (/d) and liquid-ordered (/Q) coexistence regime. Simulated domain size was varied from 5 to 50 nm, and two fluorophores, preferentially partitioning into opposite phases, were randomly mixed to obtain the simulated time-resolved FRET data. The Monte Carlo data show clear differences in the efficiency of energy transfer as a function of domain size. The model fit of the data yielded good agreement for the domain size, especially in cases where the domain diameter is < 20 nm. Thus, data analysis using the proposed model enables measurement of nanoscale membrane domains using time-resolved FRET.
URI: http://hdl.handle.net/1860/2025
Appears in Collections:Faculty Research and Publications (CBE)

Files in This Item:

File Description SizeFormat
2007005098.pdf8.31 MBAdobe PDFView/Open
View Statistics

Items in iDEA are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0! iDEA Software Copyright © 2002-2010  Duraspace - Feedback