Drexel University Home Pagewww.drexel.edu DREXEL UNIVERSITY LIBRARIES HOMEPAGE >>

iDEA: Drexel E-repository and Archives > Drexel Theses and Dissertations > Drexel Theses and Dissertations > Reconfigurable control of Aircraft undergoing Sensor and Actuator Failure

Please use this identifier to cite or link to this item: http://hdl.handle.net/1860/19

Title: Reconfigurable control of Aircraft undergoing Sensor and Actuator Failure
Authors: Bajpai, Gaurav Ratnesh
Keywords: Flight control;Airplanes -- Control systems;Mechanical Engineering
Issue Date: 31-Dec-2002
Publisher: Drexel University
Abstract: Significant number of fatal aircraft accidents in recent years have been linked to component failures. With the predicted increase in air traffic these numbers are likely to increase. With reduction of fatal accidents as motivation, this dissertation investigates design of fault tolerant control systems for aircrafts undergoing sensor and/or actuator failures. Given that the nominal controller may perform inadequately in the event of sensors and/or actuator failure, the feasible approach for such a control scheme is to predesign various controllers anticipating these failures and then switching to an appropriate controller when the failure occurs. This is enabled by the available redundancy in sensing and actuation and allows the system to perform adequately even when these failures occur. The predesign of controllers for sensor and actuator failures is considered. Sensor failures are easily accommodated if certain detectability conditions are met. However, the predesign for actuator failures is not trivial as the position at which the actuators fail is not known a priori. It is shown that this problem can be tackled by reducing it to the classical control problem of disturbance decoupling, in which, the functional control enables the steady state output of dynamical system to reject any disturbance due to the failed actuators. For linear systems, conditions for existence of a controller capable of accommodating these failures can be understood in geometric terms and calculations are linked to solvability of coupled matrix equations. Although control design for aircrafts is done using linear techniques, failures can cause excursions into nonlinear regimes due to ensuing changes in the flight conditions. This dissertation also uses the recent results in the nonlinear regulator theory to address actuator failures in nonlinear systems. The utility of design techniques is illustrated using flight control examples with failures. The symbolic computational tools are developed and are available in the appended disk. A section on the use of variable structure servomechanisms to perform the regulation needed in case of actuator failures is also included.
URI: http://hdl.handle.net/1860/19
Appears in Collections:Drexel Theses and Dissertations

Files in This Item:

File Description SizeFormat
bajpai_thesis.pdf782.04 kBAdobe PDFView/Open
View Statistics

Items in iDEA are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0! iDEA Software Copyright © 2002-2010  Duraspace - Feedback