Drexel University Home Pagewww.drexel.edu DREXEL UNIVERSITY LIBRARIES HOMEPAGE >>

iDEA: Drexel E-repository and Archives > Drexel Academic Community > College of Engineering > Department of Civil, Architectural,and Environmental Engineering > Proceedings of the 7th International Conference on HydroScience and Engineering (ICHE 2006) [ISBN: 0977447405] > Numerical modelling and video analysis of intermediate beach state transitions

Please use this identifier to cite or link to this item: http://hdl.handle.net/1860/1478

Title: Numerical modelling and video analysis of intermediate beach state transitions
Authors: Strauss, Darrell
Browne, Matthew
Tomlinson, Rodger
Hughes, Lawrence
Keywords: Coastal morphodynamics;Coastal modeling;Beach profiles;Coastal hydrodynamics
Issue Date: 13-Sep-2006
Publisher: Michael Piasecki and College of Engineering, Drexel University
Citation: Proceedings of the Seventh International Conference on Hydroscience and Engineering, Philadelphia, PA, September 2006. http://hdl.handle.net/1860/732
Abstract: Numerical modelling of beach morphodynamics is generally recognized as a valuable tool for scientists and coastal managers. However, the utility of numerical models is constrained by our ability to establish that the theoretical dynamics match reality. The integrated modules for simulating wave propagation, hydrodynamics and sediment transport in Delft3D, developed by Delft Hydraulics, were applied to simulate observed beach state transitions in response to wave-induced forcing. Initial model bathymetry was derived from hydrographic surveys conducted at Narrowneck beach during the pre- and post-construction phases of the Narrowneck artificial reef (Boak, McGrath and Jackson 2000, Hutt, Black and Mead 1998). The present study addresses the validity of morphological modeling of an exposed beach by comparing the evolution of a numerical model with data observed using remote imaging. Narrowneck beach on the Gold Coast is a micro-tidal, exposed coast subject to a highly variable wave climate. This beach is monitored by an ARGUS Coastal Imaging system generating high temporal frequency geo-referenced estimates of wave dissipation that may be used to infer sub-tidal bar morphology (Alexander and Holman 2004, Aarninkhof and Ruessink 2004, Turner, Dronkers, Roman, Aarninkhof and McGrath 2001). The numerical model was broadly validated, in that, when driven by similar conditions, the surf zone morphological development is consistent with that observed via optical sensing.
Description: Paper presented at The Seventh International Conference on HydroScience and Engineering (ICHE) hosted by the College of Engineering at Drexel Univeristy on September 10-13, 2006 in Philadelphia, Pennsylvania. The conference theme was IT in the Field of HydroSciences. It included several mini-symposia that emphasized IT topics in HydroSciences and the yearly meeting of the metadata group of the International Oceanographic Data and Information Exchange organization.
URI: http://hdl.handle.net/1860/1478
ISBN: 0977447405
Appears in Collections:Proceedings of the 7th International Conference on HydroScience and Engineering (ICHE 2006) [ISBN: 0977447405]

Files in This Item:

File Description SizeFormat
2007017126.pdf1.44 MBAdobe PDFView/Open
View Statistics

Items in iDEA are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0! iDEA Software Copyright © 2002-2010  Duraspace - Feedback